Cargando…
Integrative phenotyping framework (iPF): integrative clustering of multiple omics data identifies novel lung disease subphenotypes
BACKGROUND: The increased multi-omics information on carefully phenotyped patients in studies of complex diseases requires novel methods for data integration. Unlike continuous intensity measurements from most omics data sets, phenome data contain clinical variables that are binary, ordinal and cate...
Autores principales: | Kim, SungHwan, Herazo-Maya, Jose D., Kang, Dongwan D., Juan-Guardela, Brenda M., Tedrow, John, Martinez, Fernando J., Sciurba, Frank C., Tseng, George C., Kaminski, Naftali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642618/ https://www.ncbi.nlm.nih.gov/pubmed/26560100 http://dx.doi.org/10.1186/s12864-015-2170-4 |
Ejemplares similares
-
Meta-analytic support vector machine for integrating multiple omics data
por: Kim, SungHwan, et al.
Publicado: (2017) -
Integrative genetic and genomic networks identify microRNA associated with COPD and ILD
por: Pavel, Ana B., et al.
Publicado: (2023) -
Precision medicine advances in idiopathic pulmonary fibrosis
por: Karampitsakos, Theodoros, et al.
Publicado: (2023) -
Missing value imputation in high-dimensional phenomic data: imputable or not, and how?
por: Liao, Serena G, et al.
Publicado: (2014) -
A multivariate approach to the integration of multi-omics datasets
por: Meng, Chen, et al.
Publicado: (2014)