Cargando…
Bayesian Inference for Duplication–Mutation with Complementarity Network Models
We observe an undirected graph G without multiple edges and self-loops, which is to represent a protein–protein interaction (PPI) network. We assume that G evolved under the duplication–mutation with complementarity (DMC) model from a seed graph, G(0), and we also observe the binary forest Γ that re...
Autores principales: | Jasra, Ajay, Persing, Adam, Beskos, Alexandros, Heine, Kari, De Iorio, Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642832/ https://www.ncbi.nlm.nih.gov/pubmed/26355682 http://dx.doi.org/10.1089/cmb.2015.0072 |
Ejemplares similares
-
Bayesian modeling of human–AI complementarity
por: Steyvers, Mark, et al.
Publicado: (2022) -
Protein Interface Complementarity and Gene Duplication Improve Link Prediction of Protein-Protein Interaction Network
por: Chen, Yu, et al.
Publicado: (2020) -
Network Plasticity as Bayesian Inference
por: Kappel, David, et al.
Publicado: (2015) -
Inference of temporally varying Bayesian Networks
por: Thorne, Thomas, et al.
Publicado: (2012) -
Bayesian inference in ring attractor networks
por: Kutschireiter, Anna, et al.
Publicado: (2023)