Cargando…
Outcome-Driven Cluster Analysis with Application to Microarray Data
One goal of cluster analysis is to sort characteristics into groups (clusters) so that those in the same group are more highly correlated to each other than they are to those in other groups. An example is the search for groups of genes whose expression of RNA is correlated in a population of patien...
Autores principales: | Hsu, Jessie J., Finkelstein, Dianne M., Schoenfeld, David A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643008/ https://www.ncbi.nlm.nih.gov/pubmed/26562156 http://dx.doi.org/10.1371/journal.pone.0141874 |
Ejemplares similares
-
Assessing Statistical Significance in Microarray Experiments Using the Distance Between Microarrays
por: Hayden, Douglas, et al.
Publicado: (2009) -
Speeding up the Consensus Clustering methodology for microarray data analysis
por: Giancarlo, Raffaele, et al.
Publicado: (2011) -
Model-based cluster analysis of microarray gene-expression data
por: Pan, Wei, et al.
Publicado: (2002) -
Application of Gene Shaving and Mixture Models to Cluster Microarray Gene Expression Data
por: Do, K-A., et al.
Publicado: (2007) -
Bayesian Functional Data Clustering for Temporal Microarray Data
por: Ma, Ping, et al.
Publicado: (2008)