Cargando…
Imaging Sites of Inhibition of Proteolysis in Pathomimetic Human Breast Cancer Cultures by Light-Activated Ruthenium Compound
The cysteine protease cathepsin B has been causally linked to progression and metastasis of breast cancers. We demonstrate inhibition by a dipeptidyl nitrile inhibitor (compound 1) of cathepsin B activity and also of pericellular degradation of dye-quenched collagen IV by living breast cancer cells....
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643019/ https://www.ncbi.nlm.nih.gov/pubmed/26562785 http://dx.doi.org/10.1371/journal.pone.0142527 |
Sumario: | The cysteine protease cathepsin B has been causally linked to progression and metastasis of breast cancers. We demonstrate inhibition by a dipeptidyl nitrile inhibitor (compound 1) of cathepsin B activity and also of pericellular degradation of dye-quenched collagen IV by living breast cancer cells. To image, localize and quantify collagen IV degradation in real-time we used 3D pathomimetic breast cancer models designed to mimic the in vivo microenvironment of breast cancers. We further report the synthesis and characterization of a caged version of compound 1, [Ru(bpy)(2)(1)(2)](BF(4))(2) (compound 2), which can be photoactivated with visible light. Upon light activation, compound 2, like compound 1, inhibited cathepsin B activity and pericellular collagen IV degradation by the 3D pathomimetic models of living breast cancer cells, without causing toxicity. We suggest that caged inhibitor 2 is a prototype for cathepsin B inhibitors that can control both the site and timing of inhibition in cancer. |
---|