Cargando…
Improving clustering by imposing network information
Cluster analysis is one of the most popular data analysis tools in a wide range of applied disciplines. We propose and justify a computationally efficient and straightforward-to-implement way of imposing the available information from networks/graphs (a priori available in many application areas) on...
Autores principales: | Gerber, Susanne, Horenko, Illia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643807/ https://www.ncbi.nlm.nih.gov/pubmed/26601225 http://dx.doi.org/10.1126/sciadv.1500163 |
Ejemplares similares
-
A scalable approach to the computation of invariant measures for high-dimensional Markovian systems
por: Gerber, Susanne, et al.
Publicado: (2018) -
Co-Inference of Data Mislabelings Reveals Improved Models in Genomics and Breast Cancer Diagnostics
por: Gerber, Susanne, et al.
Publicado: (2022) -
A deeper look into natural sciences with physics-based and data-driven measures
por: Rodrigues, Davi Röhe, et al.
Publicado: (2021) -
Clustering and control for adaptation uncovers time-warped spike time patterns in cortical networks in vivo
por: Isbister, James B., et al.
Publicado: (2021) -
Cheap robust learning of data anomalies with analytically solvable entropic outlier sparsification
por: Horenko, Illia
Publicado: (2022)