Cargando…

Effects of High Intensity Interval Training on Pregnant Rats, and the Placenta, Heart and Liver of Their Fetuses

OBJECTIVE: To investigate the effects of high intensity interval training (HIIT) on the maternal heart, fetuses and placentas of pregnant rats. METHODS: Female Sprague-Dawley rats were randomly assigned to HIIT or sedentary control groups. The HIIT group was trained for 6 weeks with 10 bouts of high...

Descripción completa

Detalles Bibliográficos
Autores principales: Songstad, Nils Thomas, Kaspersen, Knut-Helge Frostmo, Hafstad, Anne Dragøy, Basnet, Purusotam, Ytrehus, Kirsti, Acharya, Ganesh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643918/
https://www.ncbi.nlm.nih.gov/pubmed/26566220
http://dx.doi.org/10.1371/journal.pone.0143095
_version_ 1782400587033214976
author Songstad, Nils Thomas
Kaspersen, Knut-Helge Frostmo
Hafstad, Anne Dragøy
Basnet, Purusotam
Ytrehus, Kirsti
Acharya, Ganesh
author_facet Songstad, Nils Thomas
Kaspersen, Knut-Helge Frostmo
Hafstad, Anne Dragøy
Basnet, Purusotam
Ytrehus, Kirsti
Acharya, Ganesh
author_sort Songstad, Nils Thomas
collection PubMed
description OBJECTIVE: To investigate the effects of high intensity interval training (HIIT) on the maternal heart, fetuses and placentas of pregnant rats. METHODS: Female Sprague-Dawley rats were randomly assigned to HIIT or sedentary control groups. The HIIT group was trained for 6 weeks with 10 bouts of high intensity uphill running on a treadmill for four minutes (at 85–90% of maximal oxygen consumption) for five days/week. After three weeks of HIIT, rats were mated. After six weeks (gestational day 20 in pregnant rats), echocardiography was performed to evaluate maternal cardiac function. Real-time PCR was performed for the quantification of gene expression, and oxidative stress and total antioxidant capacity was assessed in the tissue samples. RESULTS: Maternal heart weight and systolic function were not affected by HIIT or pregnancy. In the maternal heart, expression of 11 of 22 genes related to cardiac remodeling was influenced by pregnancy but none by HIIT. Litter size, fetal weight and placental weight were not affected by HIIT. Total antioxidant capacity, malondialdehyde content, peroxidase and superoxide dismutase activity measured in the placenta, fetal heart and liver were not influenced by HIIT. HIIT reduced the expression of eNOS (p = 0.03), hypoxia-inducible factor 1α (p = 0.04) and glutathione peroxidase 4.2 (p = 0.02) in the fetal liver and increased the expression of vascular endothelial growth factor-β (p = 0.014), superoxide dismutase 1 (p = 0.001) and tissue inhibitor of metallopeptidase 3 (p = 0.049) in the fetal heart. CONCLUSIONS: Maternal cardiac function and gene expression was not affected by HIIT. Although HIIT did not affect fetal growth, level of oxidative stress and total antioxidant capacity in the fetal tissues, some genes related to oxidative stress were altered in the fetal heart and liver indicating that protective mechanisms may be activated.
format Online
Article
Text
id pubmed-4643918
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-46439182015-11-18 Effects of High Intensity Interval Training on Pregnant Rats, and the Placenta, Heart and Liver of Their Fetuses Songstad, Nils Thomas Kaspersen, Knut-Helge Frostmo Hafstad, Anne Dragøy Basnet, Purusotam Ytrehus, Kirsti Acharya, Ganesh PLoS One Research Article OBJECTIVE: To investigate the effects of high intensity interval training (HIIT) on the maternal heart, fetuses and placentas of pregnant rats. METHODS: Female Sprague-Dawley rats were randomly assigned to HIIT or sedentary control groups. The HIIT group was trained for 6 weeks with 10 bouts of high intensity uphill running on a treadmill for four minutes (at 85–90% of maximal oxygen consumption) for five days/week. After three weeks of HIIT, rats were mated. After six weeks (gestational day 20 in pregnant rats), echocardiography was performed to evaluate maternal cardiac function. Real-time PCR was performed for the quantification of gene expression, and oxidative stress and total antioxidant capacity was assessed in the tissue samples. RESULTS: Maternal heart weight and systolic function were not affected by HIIT or pregnancy. In the maternal heart, expression of 11 of 22 genes related to cardiac remodeling was influenced by pregnancy but none by HIIT. Litter size, fetal weight and placental weight were not affected by HIIT. Total antioxidant capacity, malondialdehyde content, peroxidase and superoxide dismutase activity measured in the placenta, fetal heart and liver were not influenced by HIIT. HIIT reduced the expression of eNOS (p = 0.03), hypoxia-inducible factor 1α (p = 0.04) and glutathione peroxidase 4.2 (p = 0.02) in the fetal liver and increased the expression of vascular endothelial growth factor-β (p = 0.014), superoxide dismutase 1 (p = 0.001) and tissue inhibitor of metallopeptidase 3 (p = 0.049) in the fetal heart. CONCLUSIONS: Maternal cardiac function and gene expression was not affected by HIIT. Although HIIT did not affect fetal growth, level of oxidative stress and total antioxidant capacity in the fetal tissues, some genes related to oxidative stress were altered in the fetal heart and liver indicating that protective mechanisms may be activated. Public Library of Science 2015-11-13 /pmc/articles/PMC4643918/ /pubmed/26566220 http://dx.doi.org/10.1371/journal.pone.0143095 Text en © 2015 Songstad et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Songstad, Nils Thomas
Kaspersen, Knut-Helge Frostmo
Hafstad, Anne Dragøy
Basnet, Purusotam
Ytrehus, Kirsti
Acharya, Ganesh
Effects of High Intensity Interval Training on Pregnant Rats, and the Placenta, Heart and Liver of Their Fetuses
title Effects of High Intensity Interval Training on Pregnant Rats, and the Placenta, Heart and Liver of Their Fetuses
title_full Effects of High Intensity Interval Training on Pregnant Rats, and the Placenta, Heart and Liver of Their Fetuses
title_fullStr Effects of High Intensity Interval Training on Pregnant Rats, and the Placenta, Heart and Liver of Their Fetuses
title_full_unstemmed Effects of High Intensity Interval Training on Pregnant Rats, and the Placenta, Heart and Liver of Their Fetuses
title_short Effects of High Intensity Interval Training on Pregnant Rats, and the Placenta, Heart and Liver of Their Fetuses
title_sort effects of high intensity interval training on pregnant rats, and the placenta, heart and liver of their fetuses
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643918/
https://www.ncbi.nlm.nih.gov/pubmed/26566220
http://dx.doi.org/10.1371/journal.pone.0143095
work_keys_str_mv AT songstadnilsthomas effectsofhighintensityintervaltrainingonpregnantratsandtheplacentaheartandliveroftheirfetuses
AT kaspersenknuthelgefrostmo effectsofhighintensityintervaltrainingonpregnantratsandtheplacentaheartandliveroftheirfetuses
AT hafstadannedragøy effectsofhighintensityintervaltrainingonpregnantratsandtheplacentaheartandliveroftheirfetuses
AT basnetpurusotam effectsofhighintensityintervaltrainingonpregnantratsandtheplacentaheartandliveroftheirfetuses
AT ytrehuskirsti effectsofhighintensityintervaltrainingonpregnantratsandtheplacentaheartandliveroftheirfetuses
AT acharyaganesh effectsofhighintensityintervaltrainingonpregnantratsandtheplacentaheartandliveroftheirfetuses