Cargando…

Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in Western Kenya

BACKGROUND: Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are the first-line tools for malaria prevention and control in Africa. Vector resistance to insecticides has been extensively studied, however the insecticidal effects of the nets and sprayed walls on pyrethroid re...

Descripción completa

Detalles Bibliográficos
Autores principales: Wanjala, Christine L., Zhou, Guofa, Mbugi, Jernard, Simbauni, Jemimah, Afrane, Yaw A., Ototo, Ednah, Gesuge, Maxwell, Atieli, Harrysone, Githeko, Andrew K., Yan, Guiyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644290/
https://www.ncbi.nlm.nih.gov/pubmed/26567915
http://dx.doi.org/10.1186/s13071-015-1194-6
_version_ 1782400649522053120
author Wanjala, Christine L.
Zhou, Guofa
Mbugi, Jernard
Simbauni, Jemimah
Afrane, Yaw A.
Ototo, Ednah
Gesuge, Maxwell
Atieli, Harrysone
Githeko, Andrew K.
Yan, Guiyun
author_facet Wanjala, Christine L.
Zhou, Guofa
Mbugi, Jernard
Simbauni, Jemimah
Afrane, Yaw A.
Ototo, Ednah
Gesuge, Maxwell
Atieli, Harrysone
Githeko, Andrew K.
Yan, Guiyun
author_sort Wanjala, Christine L.
collection PubMed
description BACKGROUND: Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are the first-line tools for malaria prevention and control in Africa. Vector resistance to insecticides has been extensively studied, however the insecticidal effects of the nets and sprayed walls on pyrethroid resistant mosquitoes has not been studied thoroughly. We evaluated the bioefficacy of LLINs of different ages and lambda-cyhalothrin (ICON 10cs) on the sprayed mud walls for a period of time on malaria vector survivorship. METHODS: WHO tube bioassay was performed using diagnostic doses of lambda-cyhalothrin (0.05 %), permethrin (0.75 %) and deltamethrin (0.05 %). Cone bioassays were conducted on netting materials from 0 to 3 years old long-lasting insecticide-impregnated nets. Wall bioassays were performed monthly on mud slabs sprayed with lambdacyhalothrin over a period of seven months. All bioassays used An. gambiae mosquitoes collected from the field and the laboratory susceptible reference Kisumu strain. Concentration of the insecticides on the netting materials was examined using the gas chromatography method. Mosquitoes were identified to species level using PCR and genotyped for the kdr gene mutation frequencies. RESULTS: WHO bioassays results showed that populations from five sites were highly resistant to the pyrethroids (mortalities ranged from 52.5 to 75.3 %), and two sites were moderately resistant to these insecticides (80.4 – 87.2 %). Homozygote kdr mutations of L1014S ranged from 73 to 88 % in An. gambiae s.s. dominant populations whereas L1014S mutation frequencies were relatively low (7–31 %) in An. arabiensis dominant populations. There was a significant decrease (P < 0.05) in mosquito mortality with time after the spray with both lambda-cyhalothrin (75 % mortality after six months) and with the age of LLINs (60 % mortality after 24 month). Field collected mosquitoes were able to survive exposure to both IRS and LLINs even with newly sprayed walls (86.6–93.5 % mortality) and new LLINs (77.5–85.0 % mortality), Wild mosquitoes collected from the field had significantly lower mortality rates to LLINs (59.6–85.0 %) than laboratory reared susceptible strain (100 %). Insecticide concentration decreased significantly from 0.14 μg/ml in the new nets to 0.077 μg/ml in nets older than 18 months (P < 0.05). CONCLUSION: This study confirms that insecticide decay and developing levels of resistance have a negative contribution to reduced efficacy of ITN and IRS in western Kenya. These factors contribute to decreased efficacy of pyrethroid insectides in ongoing malaria control programs. In order to mitigate against the impact of insecticide resistance and decay it is important to follow the WHO policy to provide the residents with new LLINs every three years of use while maintaining a high level of LLINs coverage and usage. There is also need for urgent development and deployment of non-pyrethroid based vector control tools.
format Online
Article
Text
id pubmed-4644290
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-46442902015-11-15 Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in Western Kenya Wanjala, Christine L. Zhou, Guofa Mbugi, Jernard Simbauni, Jemimah Afrane, Yaw A. Ototo, Ednah Gesuge, Maxwell Atieli, Harrysone Githeko, Andrew K. Yan, Guiyun Parasit Vectors Research BACKGROUND: Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are the first-line tools for malaria prevention and control in Africa. Vector resistance to insecticides has been extensively studied, however the insecticidal effects of the nets and sprayed walls on pyrethroid resistant mosquitoes has not been studied thoroughly. We evaluated the bioefficacy of LLINs of different ages and lambda-cyhalothrin (ICON 10cs) on the sprayed mud walls for a period of time on malaria vector survivorship. METHODS: WHO tube bioassay was performed using diagnostic doses of lambda-cyhalothrin (0.05 %), permethrin (0.75 %) and deltamethrin (0.05 %). Cone bioassays were conducted on netting materials from 0 to 3 years old long-lasting insecticide-impregnated nets. Wall bioassays were performed monthly on mud slabs sprayed with lambdacyhalothrin over a period of seven months. All bioassays used An. gambiae mosquitoes collected from the field and the laboratory susceptible reference Kisumu strain. Concentration of the insecticides on the netting materials was examined using the gas chromatography method. Mosquitoes were identified to species level using PCR and genotyped for the kdr gene mutation frequencies. RESULTS: WHO bioassays results showed that populations from five sites were highly resistant to the pyrethroids (mortalities ranged from 52.5 to 75.3 %), and two sites were moderately resistant to these insecticides (80.4 – 87.2 %). Homozygote kdr mutations of L1014S ranged from 73 to 88 % in An. gambiae s.s. dominant populations whereas L1014S mutation frequencies were relatively low (7–31 %) in An. arabiensis dominant populations. There was a significant decrease (P < 0.05) in mosquito mortality with time after the spray with both lambda-cyhalothrin (75 % mortality after six months) and with the age of LLINs (60 % mortality after 24 month). Field collected mosquitoes were able to survive exposure to both IRS and LLINs even with newly sprayed walls (86.6–93.5 % mortality) and new LLINs (77.5–85.0 % mortality), Wild mosquitoes collected from the field had significantly lower mortality rates to LLINs (59.6–85.0 %) than laboratory reared susceptible strain (100 %). Insecticide concentration decreased significantly from 0.14 μg/ml in the new nets to 0.077 μg/ml in nets older than 18 months (P < 0.05). CONCLUSION: This study confirms that insecticide decay and developing levels of resistance have a negative contribution to reduced efficacy of ITN and IRS in western Kenya. These factors contribute to decreased efficacy of pyrethroid insectides in ongoing malaria control programs. In order to mitigate against the impact of insecticide resistance and decay it is important to follow the WHO policy to provide the residents with new LLINs every three years of use while maintaining a high level of LLINs coverage and usage. There is also need for urgent development and deployment of non-pyrethroid based vector control tools. BioMed Central 2015-11-14 /pmc/articles/PMC4644290/ /pubmed/26567915 http://dx.doi.org/10.1186/s13071-015-1194-6 Text en © Wanjala et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Wanjala, Christine L.
Zhou, Guofa
Mbugi, Jernard
Simbauni, Jemimah
Afrane, Yaw A.
Ototo, Ednah
Gesuge, Maxwell
Atieli, Harrysone
Githeko, Andrew K.
Yan, Guiyun
Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in Western Kenya
title Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in Western Kenya
title_full Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in Western Kenya
title_fullStr Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in Western Kenya
title_full_unstemmed Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in Western Kenya
title_short Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in Western Kenya
title_sort insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on anopheles gambiae and anopheles arabiensis in western kenya
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644290/
https://www.ncbi.nlm.nih.gov/pubmed/26567915
http://dx.doi.org/10.1186/s13071-015-1194-6
work_keys_str_mv AT wanjalachristinel insecticidaldecayeffectsoflonglastinginsecticidenetsandindoorresidualsprayingonanophelesgambiaeandanophelesarabiensisinwesternkenya
AT zhouguofa insecticidaldecayeffectsoflonglastinginsecticidenetsandindoorresidualsprayingonanophelesgambiaeandanophelesarabiensisinwesternkenya
AT mbugijernard insecticidaldecayeffectsoflonglastinginsecticidenetsandindoorresidualsprayingonanophelesgambiaeandanophelesarabiensisinwesternkenya
AT simbaunijemimah insecticidaldecayeffectsoflonglastinginsecticidenetsandindoorresidualsprayingonanophelesgambiaeandanophelesarabiensisinwesternkenya
AT afraneyawa insecticidaldecayeffectsoflonglastinginsecticidenetsandindoorresidualsprayingonanophelesgambiaeandanophelesarabiensisinwesternkenya
AT ototoednah insecticidaldecayeffectsoflonglastinginsecticidenetsandindoorresidualsprayingonanophelesgambiaeandanophelesarabiensisinwesternkenya
AT gesugemaxwell insecticidaldecayeffectsoflonglastinginsecticidenetsandindoorresidualsprayingonanophelesgambiaeandanophelesarabiensisinwesternkenya
AT atieliharrysone insecticidaldecayeffectsoflonglastinginsecticidenetsandindoorresidualsprayingonanophelesgambiaeandanophelesarabiensisinwesternkenya
AT githekoandrewk insecticidaldecayeffectsoflonglastinginsecticidenetsandindoorresidualsprayingonanophelesgambiaeandanophelesarabiensisinwesternkenya
AT yanguiyun insecticidaldecayeffectsoflonglastinginsecticidenetsandindoorresidualsprayingonanophelesgambiaeandanophelesarabiensisinwesternkenya