Cargando…
Synthesis and Properties Evolution of a Family of Tiara-like Phenylethanethiolated Palladium Nanoclusters
Tiara-like thiolated group 10 transition metal (Ni, Pd, Pt) nanoclusters have attracted extensive interest due to their fundamental scientific significance and potential application in a number of fields. However, the properties (e.g. the absorption) evolution with the ring size’s increase was not i...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644969/ https://www.ncbi.nlm.nih.gov/pubmed/26567806 http://dx.doi.org/10.1038/srep16628 |
Sumario: | Tiara-like thiolated group 10 transition metal (Ni, Pd, Pt) nanoclusters have attracted extensive interest due to their fundamental scientific significance and potential application in a number of fields. However, the properties (e.g. the absorption) evolution with the ring size’s increase was not investigated so far to our best knowledge, due to the challenge of obtaining a series of nanocluster analogues. Herein, we successfully synthesized, isolated and identified a family of [Pd(SC(2)H(4)Ph)(2)](n) nanoclusters (totally 17 novel clusters, n = 4–20). Their structures were determined to be tiara-like by single crystal X-ray crystallography together with theoretical calculation; their formation mechanism was proposed to be a substitution—polycondensation—ring-closure process based on experimental observations. All of these clusters are rather robust (anti-reductive and anti-oxidative) owing to their tiara-like structures with large HOMO-LUMO gaps. Finally, the optical and electrochemical evolution with the increase of ring size was investigated, and it is found that both optical and electrochemical gaps have a “turning point” at a size corresponding to n = 8 for [Pd(SR)(2)](n) nanoclusters. |
---|