Cargando…

Crystal chemistry and photomechanical behavior of 3,4-dimethoxycinnamic acid: correlation between maximum yield in the solid-state topochemical reaction and cooperative molecular motion

A new monoclinic polymorph, form II (P2(1)/c, Z = 4), has been isolated for 3,4-dimethoxycinnamic acid (DMCA). Its solid-state 2 + 2 photoreaction to the corresponding α-truxillic acid is different from that of the first polymorph, the triclinic form I ([Image: see text], Z = 4) that was reported in...

Descripción completa

Detalles Bibliográficos
Autores principales: Mishra, Manish Kumar, Mukherjee, Arijit, Ramamurty, Upadrasta, Desiraju, Gautam R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4645110/
https://www.ncbi.nlm.nih.gov/pubmed/26594373
http://dx.doi.org/10.1107/S2052252515017297
Descripción
Sumario:A new monoclinic polymorph, form II (P2(1)/c, Z = 4), has been isolated for 3,4-dimethoxycinnamic acid (DMCA). Its solid-state 2 + 2 photoreaction to the corresponding α-truxillic acid is different from that of the first polymorph, the triclinic form I ([Image: see text], Z = 4) that was reported in 1984. The crystal structures of the two forms are rather different. The two polymorphs also exhibit different photomechanical properties. Form I exhibits photosalient behavior but this effect is absent in form II. These properties can be explained on the basis of the crystal packing in the two forms. The nanoindentation technique is used to shed further insights into these structure−property relationships. A faster photoreaction in form I and a higher yield in form II are rationalized on the basis of the mechanical properties of the individual crystal forms. It is suggested that both Schmidt-type and Kaupp-type topochemistry are applicable for the solid-state trans-cinnamic acid photodimerization reaction. Form I of DMCA is more plastic and seems to react under Kaupp-type conditions with maximum molecular movements. Form II is more brittle, and its interlocked structure seems to favor Schmidt-type topochemistry with minimum molecular movement.