Cargando…
The Impact of Heterogeneous Thresholds on Social Contagion with Multiple Initiators
The threshold model is a simple but classic model of contagion spreading in complex social systems. To capture the complex nature of social influencing we investigate numerically and analytically the transition in the behavior of threshold-limited cascades in the presence of multiple initiators as t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646465/ https://www.ncbi.nlm.nih.gov/pubmed/26571486 http://dx.doi.org/10.1371/journal.pone.0143020 |
_version_ | 1782400939732238336 |
---|---|
author | Karampourniotis, Panagiotis D. Sreenivasan, Sameet Szymanski, Boleslaw K. Korniss, Gyorgy |
author_facet | Karampourniotis, Panagiotis D. Sreenivasan, Sameet Szymanski, Boleslaw K. Korniss, Gyorgy |
author_sort | Karampourniotis, Panagiotis D. |
collection | PubMed |
description | The threshold model is a simple but classic model of contagion spreading in complex social systems. To capture the complex nature of social influencing we investigate numerically and analytically the transition in the behavior of threshold-limited cascades in the presence of multiple initiators as the distribution of thresholds is varied between the two extreme cases of identical thresholds and a uniform distribution. We accomplish this by employing a truncated normal distribution of the nodes’ thresholds and observe a non-monotonic change in the cascade size as we vary the standard deviation. Further, for a sufficiently large spread in the threshold distribution, the tipping-point behavior of the social influencing process disappears and is replaced by a smooth crossover governed by the size of initiator set. We demonstrate that for a given size of the initiator set, there is a specific variance of the threshold distribution for which an opinion spreads optimally. Furthermore, in the case of synthetic graphs we show that the spread asymptotically becomes independent of the system size, and that global cascades can arise just by the addition of a single node to the initiator set. |
format | Online Article Text |
id | pubmed-4646465 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46464652015-11-25 The Impact of Heterogeneous Thresholds on Social Contagion with Multiple Initiators Karampourniotis, Panagiotis D. Sreenivasan, Sameet Szymanski, Boleslaw K. Korniss, Gyorgy PLoS One Research Article The threshold model is a simple but classic model of contagion spreading in complex social systems. To capture the complex nature of social influencing we investigate numerically and analytically the transition in the behavior of threshold-limited cascades in the presence of multiple initiators as the distribution of thresholds is varied between the two extreme cases of identical thresholds and a uniform distribution. We accomplish this by employing a truncated normal distribution of the nodes’ thresholds and observe a non-monotonic change in the cascade size as we vary the standard deviation. Further, for a sufficiently large spread in the threshold distribution, the tipping-point behavior of the social influencing process disappears and is replaced by a smooth crossover governed by the size of initiator set. We demonstrate that for a given size of the initiator set, there is a specific variance of the threshold distribution for which an opinion spreads optimally. Furthermore, in the case of synthetic graphs we show that the spread asymptotically becomes independent of the system size, and that global cascades can arise just by the addition of a single node to the initiator set. Public Library of Science 2015-11-16 /pmc/articles/PMC4646465/ /pubmed/26571486 http://dx.doi.org/10.1371/journal.pone.0143020 Text en © 2015 Karampourniotis et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Karampourniotis, Panagiotis D. Sreenivasan, Sameet Szymanski, Boleslaw K. Korniss, Gyorgy The Impact of Heterogeneous Thresholds on Social Contagion with Multiple Initiators |
title | The Impact of Heterogeneous Thresholds on Social Contagion with Multiple Initiators |
title_full | The Impact of Heterogeneous Thresholds on Social Contagion with Multiple Initiators |
title_fullStr | The Impact of Heterogeneous Thresholds on Social Contagion with Multiple Initiators |
title_full_unstemmed | The Impact of Heterogeneous Thresholds on Social Contagion with Multiple Initiators |
title_short | The Impact of Heterogeneous Thresholds on Social Contagion with Multiple Initiators |
title_sort | impact of heterogeneous thresholds on social contagion with multiple initiators |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646465/ https://www.ncbi.nlm.nih.gov/pubmed/26571486 http://dx.doi.org/10.1371/journal.pone.0143020 |
work_keys_str_mv | AT karampourniotispanagiotisd theimpactofheterogeneousthresholdsonsocialcontagionwithmultipleinitiators AT sreenivasansameet theimpactofheterogeneousthresholdsonsocialcontagionwithmultipleinitiators AT szymanskiboleslawk theimpactofheterogeneousthresholdsonsocialcontagionwithmultipleinitiators AT kornissgyorgy theimpactofheterogeneousthresholdsonsocialcontagionwithmultipleinitiators AT karampourniotispanagiotisd impactofheterogeneousthresholdsonsocialcontagionwithmultipleinitiators AT sreenivasansameet impactofheterogeneousthresholdsonsocialcontagionwithmultipleinitiators AT szymanskiboleslawk impactofheterogeneousthresholdsonsocialcontagionwithmultipleinitiators AT kornissgyorgy impactofheterogeneousthresholdsonsocialcontagionwithmultipleinitiators |