Cargando…
Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation
The rational design and realization of revolutionary porous structures have been long-standing challenges in membrane science. We demonstrate a new class of amphiphilic polystyrene-block-poly(4-vinylpyridine) block copolymer (BCP)–based porous membranes featuring hierarchical multiscale hyperporous...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646775/ https://www.ncbi.nlm.nih.gov/pubmed/26601212 http://dx.doi.org/10.1126/sciadv.1500101 |
_version_ | 1782400980153794560 |
---|---|
author | Yoo, Seungmin Kim, Jung-Hwan Shin, Myoungsoo Park, Hyungmin Kim, Jeong-Hoon Lee, Sang-Young Park, Soojin |
author_facet | Yoo, Seungmin Kim, Jung-Hwan Shin, Myoungsoo Park, Hyungmin Kim, Jeong-Hoon Lee, Sang-Young Park, Soojin |
author_sort | Yoo, Seungmin |
collection | PubMed |
description | The rational design and realization of revolutionary porous structures have been long-standing challenges in membrane science. We demonstrate a new class of amphiphilic polystyrene-block-poly(4-vinylpyridine) block copolymer (BCP)–based porous membranes featuring hierarchical multiscale hyperporous structures. The introduction of surface energy–modifying agents and the control of major phase separation parameters (such as nonsolvent polarity and solvent drying time) enable tunable dual-phase separation of BCPs, eventually leading to macro/nanoscale porous structures and chemical functionalities far beyond those accessible with conventional approaches. Application of this BCP membrane to a lithium-ion battery separator affords exceptional improvement in electrochemical performance. The dual-phase separation–driven macro/nanopore construction strategy, owing to its simplicity and tunability, is expected to be readily applicable to a rich variety of membrane fields including molecular separation, water purification, and energy-related devices. |
format | Online Article Text |
id | pubmed-4646775 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46467752015-11-23 Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation Yoo, Seungmin Kim, Jung-Hwan Shin, Myoungsoo Park, Hyungmin Kim, Jeong-Hoon Lee, Sang-Young Park, Soojin Sci Adv Research Articles The rational design and realization of revolutionary porous structures have been long-standing challenges in membrane science. We demonstrate a new class of amphiphilic polystyrene-block-poly(4-vinylpyridine) block copolymer (BCP)–based porous membranes featuring hierarchical multiscale hyperporous structures. The introduction of surface energy–modifying agents and the control of major phase separation parameters (such as nonsolvent polarity and solvent drying time) enable tunable dual-phase separation of BCPs, eventually leading to macro/nanoscale porous structures and chemical functionalities far beyond those accessible with conventional approaches. Application of this BCP membrane to a lithium-ion battery separator affords exceptional improvement in electrochemical performance. The dual-phase separation–driven macro/nanopore construction strategy, owing to its simplicity and tunability, is expected to be readily applicable to a rich variety of membrane fields including molecular separation, water purification, and energy-related devices. American Association for the Advancement of Science 2015-07-24 /pmc/articles/PMC4646775/ /pubmed/26601212 http://dx.doi.org/10.1126/sciadv.1500101 Text en Copyright © 2015, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Yoo, Seungmin Kim, Jung-Hwan Shin, Myoungsoo Park, Hyungmin Kim, Jeong-Hoon Lee, Sang-Young Park, Soojin Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation |
title | Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation |
title_full | Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation |
title_fullStr | Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation |
title_full_unstemmed | Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation |
title_short | Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation |
title_sort | hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646775/ https://www.ncbi.nlm.nih.gov/pubmed/26601212 http://dx.doi.org/10.1126/sciadv.1500101 |
work_keys_str_mv | AT yooseungmin hierarchicalmultiscalehyperporousblockcopolymermembranesviatunabledualphaseseparation AT kimjunghwan hierarchicalmultiscalehyperporousblockcopolymermembranesviatunabledualphaseseparation AT shinmyoungsoo hierarchicalmultiscalehyperporousblockcopolymermembranesviatunabledualphaseseparation AT parkhyungmin hierarchicalmultiscalehyperporousblockcopolymermembranesviatunabledualphaseseparation AT kimjeonghoon hierarchicalmultiscalehyperporousblockcopolymermembranesviatunabledualphaseseparation AT leesangyoung hierarchicalmultiscalehyperporousblockcopolymermembranesviatunabledualphaseseparation AT parksoojin hierarchicalmultiscalehyperporousblockcopolymermembranesviatunabledualphaseseparation |