Cargando…

Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation

The rational design and realization of revolutionary porous structures have been long-standing challenges in membrane science. We demonstrate a new class of amphiphilic polystyrene-block-poly(4-vinylpyridine) block copolymer (BCP)–based porous membranes featuring hierarchical multiscale hyperporous...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoo, Seungmin, Kim, Jung-Hwan, Shin, Myoungsoo, Park, Hyungmin, Kim, Jeong-Hoon, Lee, Sang-Young, Park, Soojin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646775/
https://www.ncbi.nlm.nih.gov/pubmed/26601212
http://dx.doi.org/10.1126/sciadv.1500101
_version_ 1782400980153794560
author Yoo, Seungmin
Kim, Jung-Hwan
Shin, Myoungsoo
Park, Hyungmin
Kim, Jeong-Hoon
Lee, Sang-Young
Park, Soojin
author_facet Yoo, Seungmin
Kim, Jung-Hwan
Shin, Myoungsoo
Park, Hyungmin
Kim, Jeong-Hoon
Lee, Sang-Young
Park, Soojin
author_sort Yoo, Seungmin
collection PubMed
description The rational design and realization of revolutionary porous structures have been long-standing challenges in membrane science. We demonstrate a new class of amphiphilic polystyrene-block-poly(4-vinylpyridine) block copolymer (BCP)–based porous membranes featuring hierarchical multiscale hyperporous structures. The introduction of surface energy–modifying agents and the control of major phase separation parameters (such as nonsolvent polarity and solvent drying time) enable tunable dual-phase separation of BCPs, eventually leading to macro/nanoscale porous structures and chemical functionalities far beyond those accessible with conventional approaches. Application of this BCP membrane to a lithium-ion battery separator affords exceptional improvement in electrochemical performance. The dual-phase separation–driven macro/nanopore construction strategy, owing to its simplicity and tunability, is expected to be readily applicable to a rich variety of membrane fields including molecular separation, water purification, and energy-related devices.
format Online
Article
Text
id pubmed-4646775
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-46467752015-11-23 Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation Yoo, Seungmin Kim, Jung-Hwan Shin, Myoungsoo Park, Hyungmin Kim, Jeong-Hoon Lee, Sang-Young Park, Soojin Sci Adv Research Articles The rational design and realization of revolutionary porous structures have been long-standing challenges in membrane science. We demonstrate a new class of amphiphilic polystyrene-block-poly(4-vinylpyridine) block copolymer (BCP)–based porous membranes featuring hierarchical multiscale hyperporous structures. The introduction of surface energy–modifying agents and the control of major phase separation parameters (such as nonsolvent polarity and solvent drying time) enable tunable dual-phase separation of BCPs, eventually leading to macro/nanoscale porous structures and chemical functionalities far beyond those accessible with conventional approaches. Application of this BCP membrane to a lithium-ion battery separator affords exceptional improvement in electrochemical performance. The dual-phase separation–driven macro/nanopore construction strategy, owing to its simplicity and tunability, is expected to be readily applicable to a rich variety of membrane fields including molecular separation, water purification, and energy-related devices. American Association for the Advancement of Science 2015-07-24 /pmc/articles/PMC4646775/ /pubmed/26601212 http://dx.doi.org/10.1126/sciadv.1500101 Text en Copyright © 2015, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Yoo, Seungmin
Kim, Jung-Hwan
Shin, Myoungsoo
Park, Hyungmin
Kim, Jeong-Hoon
Lee, Sang-Young
Park, Soojin
Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation
title Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation
title_full Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation
title_fullStr Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation
title_full_unstemmed Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation
title_short Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation
title_sort hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646775/
https://www.ncbi.nlm.nih.gov/pubmed/26601212
http://dx.doi.org/10.1126/sciadv.1500101
work_keys_str_mv AT yooseungmin hierarchicalmultiscalehyperporousblockcopolymermembranesviatunabledualphaseseparation
AT kimjunghwan hierarchicalmultiscalehyperporousblockcopolymermembranesviatunabledualphaseseparation
AT shinmyoungsoo hierarchicalmultiscalehyperporousblockcopolymermembranesviatunabledualphaseseparation
AT parkhyungmin hierarchicalmultiscalehyperporousblockcopolymermembranesviatunabledualphaseseparation
AT kimjeonghoon hierarchicalmultiscalehyperporousblockcopolymermembranesviatunabledualphaseseparation
AT leesangyoung hierarchicalmultiscalehyperporousblockcopolymermembranesviatunabledualphaseseparation
AT parksoojin hierarchicalmultiscalehyperporousblockcopolymermembranesviatunabledualphaseseparation