Cargando…

Spatiotemporal quantification of subcellular ATP levels in a single HeLa cell during changes in morphology

The quantitative relationship between change in cell shape and ATP consumption is an unsolved problem in cell biology. In this study, a simultaneous imaging and image processing analysis allowed us to observe and quantify these relationships under physiological conditions, for the first time. We foc...

Descripción completa

Detalles Bibliográficos
Autores principales: Suzuki, Rika, Hotta, Kohji, Oka, Kotaro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4647183/
https://www.ncbi.nlm.nih.gov/pubmed/26575097
http://dx.doi.org/10.1038/srep16874
Descripción
Sumario:The quantitative relationship between change in cell shape and ATP consumption is an unsolved problem in cell biology. In this study, a simultaneous imaging and image processing analysis allowed us to observe and quantify these relationships under physiological conditions, for the first time. We focused on two marginal regions of cells: the microtubule-rich ‘lamella’ and the actin-rich ‘peripheral structure’. Simultaneous imaging and correlation analysis revealed that microtubule dynamics cause lamellar shape change accompanying an increase in ATP level. Also, image processing and spatiotemporal quantification enabled to visualize a chronological change of the relationships between the protrusion length and ATP levels, and it suggested they are influencing each other. Furthermore, inhibition of microtubule dynamics diminished motility in the peripheral structure and the range of fluctuation of ATP level in the lamella. This work clearly demonstrates that cellular motility and morphology are regulated by ATP-related cooperative function between microtubule and actin dynamics.