Cargando…
Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes
Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4647222/ https://www.ncbi.nlm.nih.gov/pubmed/26572103 http://dx.doi.org/10.1038/srep16493 |
_version_ | 1782401053226958848 |
---|---|
author | Uhl, Jonathan T. Pathak, Shivesh Schorlemmer, Danijel Liu, Xin Swindeman, Ryan Brinkman, Braden A. W. LeBlanc, Michael Tsekenis, Georgios Friedman, Nir Behringer, Robert Denisov, Dmitry Schall, Peter Gu, Xiaojun Wright, Wendelin J. Hufnagel, Todd Jennings, Andrew Greer, Julia R. Liaw, P. K. Becker, Thorsten Dresen, Georg Dahmen, Karin A. |
author_facet | Uhl, Jonathan T. Pathak, Shivesh Schorlemmer, Danijel Liu, Xin Swindeman, Ryan Brinkman, Braden A. W. LeBlanc, Michael Tsekenis, Georgios Friedman, Nir Behringer, Robert Denisov, Dmitry Schall, Peter Gu, Xiaojun Wright, Wendelin J. Hufnagel, Todd Jennings, Andrew Greer, Julia R. Liaw, P. K. Becker, Thorsten Dresen, Georg Dahmen, Karin A. |
author_sort | Uhl, Jonathan T. |
collection | PubMed |
description | Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes. |
format | Online Article Text |
id | pubmed-4647222 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-46472222015-11-23 Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes Uhl, Jonathan T. Pathak, Shivesh Schorlemmer, Danijel Liu, Xin Swindeman, Ryan Brinkman, Braden A. W. LeBlanc, Michael Tsekenis, Georgios Friedman, Nir Behringer, Robert Denisov, Dmitry Schall, Peter Gu, Xiaojun Wright, Wendelin J. Hufnagel, Todd Jennings, Andrew Greer, Julia R. Liaw, P. K. Becker, Thorsten Dresen, Georg Dahmen, Karin A. Sci Rep Article Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes. Nature Publishing Group 2015-11-17 /pmc/articles/PMC4647222/ /pubmed/26572103 http://dx.doi.org/10.1038/srep16493 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Uhl, Jonathan T. Pathak, Shivesh Schorlemmer, Danijel Liu, Xin Swindeman, Ryan Brinkman, Braden A. W. LeBlanc, Michael Tsekenis, Georgios Friedman, Nir Behringer, Robert Denisov, Dmitry Schall, Peter Gu, Xiaojun Wright, Wendelin J. Hufnagel, Todd Jennings, Andrew Greer, Julia R. Liaw, P. K. Becker, Thorsten Dresen, Georg Dahmen, Karin A. Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes |
title | Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes |
title_full | Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes |
title_fullStr | Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes |
title_full_unstemmed | Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes |
title_short | Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes |
title_sort | universal quake statistics: from compressed nanocrystals to earthquakes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4647222/ https://www.ncbi.nlm.nih.gov/pubmed/26572103 http://dx.doi.org/10.1038/srep16493 |
work_keys_str_mv | AT uhljonathant universalquakestatisticsfromcompressednanocrystalstoearthquakes AT pathakshivesh universalquakestatisticsfromcompressednanocrystalstoearthquakes AT schorlemmerdanijel universalquakestatisticsfromcompressednanocrystalstoearthquakes AT liuxin universalquakestatisticsfromcompressednanocrystalstoearthquakes AT swindemanryan universalquakestatisticsfromcompressednanocrystalstoearthquakes AT brinkmanbradenaw universalquakestatisticsfromcompressednanocrystalstoearthquakes AT leblancmichael universalquakestatisticsfromcompressednanocrystalstoearthquakes AT tsekenisgeorgios universalquakestatisticsfromcompressednanocrystalstoearthquakes AT friedmannir universalquakestatisticsfromcompressednanocrystalstoearthquakes AT behringerrobert universalquakestatisticsfromcompressednanocrystalstoearthquakes AT denisovdmitry universalquakestatisticsfromcompressednanocrystalstoearthquakes AT schallpeter universalquakestatisticsfromcompressednanocrystalstoearthquakes AT guxiaojun universalquakestatisticsfromcompressednanocrystalstoearthquakes AT wrightwendelinj universalquakestatisticsfromcompressednanocrystalstoearthquakes AT hufnageltodd universalquakestatisticsfromcompressednanocrystalstoearthquakes AT jenningsandrew universalquakestatisticsfromcompressednanocrystalstoearthquakes AT greerjuliar universalquakestatisticsfromcompressednanocrystalstoearthquakes AT liawpk universalquakestatisticsfromcompressednanocrystalstoearthquakes AT beckerthorsten universalquakestatisticsfromcompressednanocrystalstoearthquakes AT dresengeorg universalquakestatisticsfromcompressednanocrystalstoearthquakes AT dahmenkarina universalquakestatisticsfromcompressednanocrystalstoearthquakes |