Cargando…

Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes

Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and...

Descripción completa

Detalles Bibliográficos
Autores principales: Uhl, Jonathan T., Pathak, Shivesh, Schorlemmer, Danijel, Liu, Xin, Swindeman, Ryan, Brinkman, Braden A. W., LeBlanc, Michael, Tsekenis, Georgios, Friedman, Nir, Behringer, Robert, Denisov, Dmitry, Schall, Peter, Gu, Xiaojun, Wright, Wendelin J., Hufnagel, Todd, Jennings, Andrew, Greer, Julia R., Liaw, P. K., Becker, Thorsten, Dresen, Georg, Dahmen, Karin A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4647222/
https://www.ncbi.nlm.nih.gov/pubmed/26572103
http://dx.doi.org/10.1038/srep16493
_version_ 1782401053226958848
author Uhl, Jonathan T.
Pathak, Shivesh
Schorlemmer, Danijel
Liu, Xin
Swindeman, Ryan
Brinkman, Braden A. W.
LeBlanc, Michael
Tsekenis, Georgios
Friedman, Nir
Behringer, Robert
Denisov, Dmitry
Schall, Peter
Gu, Xiaojun
Wright, Wendelin J.
Hufnagel, Todd
Jennings, Andrew
Greer, Julia R.
Liaw, P. K.
Becker, Thorsten
Dresen, Georg
Dahmen, Karin A.
author_facet Uhl, Jonathan T.
Pathak, Shivesh
Schorlemmer, Danijel
Liu, Xin
Swindeman, Ryan
Brinkman, Braden A. W.
LeBlanc, Michael
Tsekenis, Georgios
Friedman, Nir
Behringer, Robert
Denisov, Dmitry
Schall, Peter
Gu, Xiaojun
Wright, Wendelin J.
Hufnagel, Todd
Jennings, Andrew
Greer, Julia R.
Liaw, P. K.
Becker, Thorsten
Dresen, Georg
Dahmen, Karin A.
author_sort Uhl, Jonathan T.
collection PubMed
description Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.
format Online
Article
Text
id pubmed-4647222
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-46472222015-11-23 Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes Uhl, Jonathan T. Pathak, Shivesh Schorlemmer, Danijel Liu, Xin Swindeman, Ryan Brinkman, Braden A. W. LeBlanc, Michael Tsekenis, Georgios Friedman, Nir Behringer, Robert Denisov, Dmitry Schall, Peter Gu, Xiaojun Wright, Wendelin J. Hufnagel, Todd Jennings, Andrew Greer, Julia R. Liaw, P. K. Becker, Thorsten Dresen, Georg Dahmen, Karin A. Sci Rep Article Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes. Nature Publishing Group 2015-11-17 /pmc/articles/PMC4647222/ /pubmed/26572103 http://dx.doi.org/10.1038/srep16493 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Uhl, Jonathan T.
Pathak, Shivesh
Schorlemmer, Danijel
Liu, Xin
Swindeman, Ryan
Brinkman, Braden A. W.
LeBlanc, Michael
Tsekenis, Georgios
Friedman, Nir
Behringer, Robert
Denisov, Dmitry
Schall, Peter
Gu, Xiaojun
Wright, Wendelin J.
Hufnagel, Todd
Jennings, Andrew
Greer, Julia R.
Liaw, P. K.
Becker, Thorsten
Dresen, Georg
Dahmen, Karin A.
Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes
title Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes
title_full Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes
title_fullStr Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes
title_full_unstemmed Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes
title_short Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes
title_sort universal quake statistics: from compressed nanocrystals to earthquakes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4647222/
https://www.ncbi.nlm.nih.gov/pubmed/26572103
http://dx.doi.org/10.1038/srep16493
work_keys_str_mv AT uhljonathant universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT pathakshivesh universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT schorlemmerdanijel universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT liuxin universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT swindemanryan universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT brinkmanbradenaw universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT leblancmichael universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT tsekenisgeorgios universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT friedmannir universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT behringerrobert universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT denisovdmitry universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT schallpeter universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT guxiaojun universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT wrightwendelinj universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT hufnageltodd universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT jenningsandrew universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT greerjuliar universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT liawpk universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT beckerthorsten universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT dresengeorg universalquakestatisticsfromcompressednanocrystalstoearthquakes
AT dahmenkarina universalquakestatisticsfromcompressednanocrystalstoearthquakes