Cargando…

Antioxidant, antidiabetic and hypolipidemic effects of Tulbaghia violacea Harv. (wild garlic) rhizome methanolic extract in a diabetic rat model

BACKGROUND: The prevalence of diabetes mellitus (DM) continues to rise alarmingly despite years of intensive research. The need to explore alternative remedies such as traditional phytotherapy has therefore become increasingly important in the management and treatment of DM. METHODS: Diabetes was in...

Descripción completa

Detalles Bibliográficos
Autores principales: Moodley, Kogi, Joseph, Kimane, Naidoo, Yougasphree, Islam, Shahidul, Mackraj, Irene
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4647322/
https://www.ncbi.nlm.nih.gov/pubmed/26577219
http://dx.doi.org/10.1186/s12906-015-0932-9
Descripción
Sumario:BACKGROUND: The prevalence of diabetes mellitus (DM) continues to rise alarmingly despite years of intensive research. The need to explore alternative remedies such as traditional phytotherapy has therefore become increasingly important in the management and treatment of DM. METHODS: Diabetes was induced by a single intraperitoneal (i.p) injection of streptozotocin (40 mg/kg.b.w) in male Wistar rats. The rats were divided into 5 groups as follows: non-diabetic control fed distilled water, diabetic control fed distilled water, diabetic group treated with Tulbaghia violacea (TVL) (60 mg/kg.b.w), diabetic group treated with TVL (120 mg/kg.b.w), and diabetic group treated with glibenclamide (10 mg/kg.b.w). Food and water intake, as well as urine output were measured daily, whilst body weight and fasting blood glucose were monitored weekly. On day 42, an oral glucose tolerance test was performed on all groups. After 7 weeks, the animals were sacrificed by halothane overdose, blood was removed by cardiac puncture and tissues were harvested. Assays were performed for the determination of plasma insulin, liver glycogen content, lipid peroxidation, antioxidant enzyme levels, plasma nitric oxide levels and serum lipid and liver enzyme levels. RESULTS AND DISCUSSION: TVL treatment improved body weights, significantly reduced fasting blood glucose levels, improved glucose tolerance and significantly increased plasma insulin and liver glycogen content. TVL treatment also reduced liver thiobarbituric acid reactive substances (TBARS) levels, increased liver superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) and increased plasma nitric oxide (NO) levels. Furthermore, TVL administration reduced serum triglycerides, VLDL, total-cholesterol levels and increased HDL-cholesterol levels. TVL also reduced serum levels of liver enzymes, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). CONCLUSION: Data obtained in this study demonstrated the hypoglycemic, antioxidant, hepatoprotective and hypolipidemic effects of TVL in STZ-induced diabetic rats.