Cargando…
Dopamine D1/D2 Receptor Activity in the Nucleus Accumbens Core But Not in the Nucleus Accumbens Shell and Orbitofrontal Cortex Modulates Risk-Based Decision Making
BACKGROUND: It is well known that brain dopamine (DA) signals support risk-based decision making; however, the specific terminal regions of midbrain DA neurons through which DA signals mediate risk-based decision making are unknown. METHODS: Using microinfusions of the D1/D2 receptor antagonist flup...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648164/ https://www.ncbi.nlm.nih.gov/pubmed/25908669 http://dx.doi.org/10.1093/ijnp/pyv043 |
_version_ | 1782401205850341376 |
---|---|
author | Mai, Bettina Sommer, Susanne Hauber, Wolfgang |
author_facet | Mai, Bettina Sommer, Susanne Hauber, Wolfgang |
author_sort | Mai, Bettina |
collection | PubMed |
description | BACKGROUND: It is well known that brain dopamine (DA) signals support risk-based decision making; however, the specific terminal regions of midbrain DA neurons through which DA signals mediate risk-based decision making are unknown. METHODS: Using microinfusions of the D1/D2 receptor antagonist flupenthixol, we sought to explore the role of D1/D2 receptor activity in the rat orbitofrontal cortex (OFC) and core and shell regions of the nucleus accumbens (AcbC and AcbS, respectively) in the regulation of risky choices. A risk-discounting task was used that involves choices between a certain small-reward lever that always delivered 1 pellet or a risky large-reward lever which delivered 4 pellets but had a decreasing probability of receiving the reward across 4 subsequent within-session trial blocks (100%, 50%, 25%, 12.5%). To validate task sensitivity to experimental manipulations of DA activity, we also examined the effects of systemic amphetamine and flupenthixol. RESULTS: Systemic amphetamine increased while systemic flupenthixol reduced risky choices. Results further demonstrate that rats that received intra-AcbC flupenthixol were able to track increasing risk associated with the risky lever but displayed a generally reduced preference for the risky lever across all trial blocks, including in the initial trial block (large reward at 100%). Microinfusions of flupenthixol into the AcbS or OFC did not alter risk-based decision making. CONCLUSIONS: Our data suggest that intra-AcbC D1/D2 receptor signaling does not support the ability to track shifts in reward probabilities but does bias risk-based decision making. That is, it increased the rats’ preference for the response option known to be associated with higher risk-related costs. |
format | Online Article Text |
id | pubmed-4648164 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-46481642015-11-24 Dopamine D1/D2 Receptor Activity in the Nucleus Accumbens Core But Not in the Nucleus Accumbens Shell and Orbitofrontal Cortex Modulates Risk-Based Decision Making Mai, Bettina Sommer, Susanne Hauber, Wolfgang Int J Neuropsychopharmacol Research Article BACKGROUND: It is well known that brain dopamine (DA) signals support risk-based decision making; however, the specific terminal regions of midbrain DA neurons through which DA signals mediate risk-based decision making are unknown. METHODS: Using microinfusions of the D1/D2 receptor antagonist flupenthixol, we sought to explore the role of D1/D2 receptor activity in the rat orbitofrontal cortex (OFC) and core and shell regions of the nucleus accumbens (AcbC and AcbS, respectively) in the regulation of risky choices. A risk-discounting task was used that involves choices between a certain small-reward lever that always delivered 1 pellet or a risky large-reward lever which delivered 4 pellets but had a decreasing probability of receiving the reward across 4 subsequent within-session trial blocks (100%, 50%, 25%, 12.5%). To validate task sensitivity to experimental manipulations of DA activity, we also examined the effects of systemic amphetamine and flupenthixol. RESULTS: Systemic amphetamine increased while systemic flupenthixol reduced risky choices. Results further demonstrate that rats that received intra-AcbC flupenthixol were able to track increasing risk associated with the risky lever but displayed a generally reduced preference for the risky lever across all trial blocks, including in the initial trial block (large reward at 100%). Microinfusions of flupenthixol into the AcbS or OFC did not alter risk-based decision making. CONCLUSIONS: Our data suggest that intra-AcbC D1/D2 receptor signaling does not support the ability to track shifts in reward probabilities but does bias risk-based decision making. That is, it increased the rats’ preference for the response option known to be associated with higher risk-related costs. Oxford University Press 2015-04-23 /pmc/articles/PMC4648164/ /pubmed/25908669 http://dx.doi.org/10.1093/ijnp/pyv043 Text en © The Author 2015. Published by Oxford University Press on behalf of CINP. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Mai, Bettina Sommer, Susanne Hauber, Wolfgang Dopamine D1/D2 Receptor Activity in the Nucleus Accumbens Core But Not in the Nucleus Accumbens Shell and Orbitofrontal Cortex Modulates Risk-Based Decision Making |
title | Dopamine D1/D2 Receptor Activity in the Nucleus Accumbens Core But Not in the Nucleus Accumbens Shell and Orbitofrontal Cortex Modulates Risk-Based Decision Making |
title_full | Dopamine D1/D2 Receptor Activity in the Nucleus Accumbens Core But Not in the Nucleus Accumbens Shell and Orbitofrontal Cortex Modulates Risk-Based Decision Making |
title_fullStr | Dopamine D1/D2 Receptor Activity in the Nucleus Accumbens Core But Not in the Nucleus Accumbens Shell and Orbitofrontal Cortex Modulates Risk-Based Decision Making |
title_full_unstemmed | Dopamine D1/D2 Receptor Activity in the Nucleus Accumbens Core But Not in the Nucleus Accumbens Shell and Orbitofrontal Cortex Modulates Risk-Based Decision Making |
title_short | Dopamine D1/D2 Receptor Activity in the Nucleus Accumbens Core But Not in the Nucleus Accumbens Shell and Orbitofrontal Cortex Modulates Risk-Based Decision Making |
title_sort | dopamine d1/d2 receptor activity in the nucleus accumbens core but not in the nucleus accumbens shell and orbitofrontal cortex modulates risk-based decision making |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648164/ https://www.ncbi.nlm.nih.gov/pubmed/25908669 http://dx.doi.org/10.1093/ijnp/pyv043 |
work_keys_str_mv | AT maibettina dopamined1d2receptoractivityinthenucleusaccumbenscorebutnotinthenucleusaccumbensshellandorbitofrontalcortexmodulatesriskbaseddecisionmaking AT sommersusanne dopamined1d2receptoractivityinthenucleusaccumbenscorebutnotinthenucleusaccumbensshellandorbitofrontalcortexmodulatesriskbaseddecisionmaking AT hauberwolfgang dopamined1d2receptoractivityinthenucleusaccumbenscorebutnotinthenucleusaccumbensshellandorbitofrontalcortexmodulatesriskbaseddecisionmaking |