Cargando…
GO-PCA: An Unsupervised Method to Explore Gene Expression Data Using Prior Knowledge
METHOD: Genome-wide expression profiling is a widely used approach for characterizing heterogeneous populations of cells, tissues, biopsies, or other biological specimen. The exploratory analysis of such data typically relies on generic unsupervised methods, e.g. principal component analysis (PCA) o...
Autor principal: | Wagner, Florian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648502/ https://www.ncbi.nlm.nih.gov/pubmed/26575370 http://dx.doi.org/10.1371/journal.pone.0143196 |
Ejemplares similares
-
Unsupervised Detection of Suspicious Tissue Using Data Modeling and PCA
por: Abdel-Qader, Ikhlas, et al.
Publicado: (2006) -
Integrating gene expression and GO classification for PCA by preclustering
por: De Haan, Jorn R, et al.
Publicado: (2010) -
PCA-based unsupervised feature extraction for gene expression analysis of COVID-19 patients
por: Fujisawa, Kota, et al.
Publicado: (2021) -
PCA2GO: a new multivariate statistics based method to identify highly expressed GO-Terms
por: Bruckskotten, Marc, et al.
Publicado: (2010) -
Adapted tensor decomposition and PCA based unsupervised feature extraction select more biologically reasonable differentially expressed genes than conventional methods
por: Taguchi, Y-h., et al.
Publicado: (2022)