Cargando…
Multivariate Boosting for Integrative Analysis of High-Dimensional Cancer Genomic Data
In this paper, we propose a novel multivariate component-wise boosting method for fitting multivariate response regression models under the high-dimension, low sample size setting. Our method is motivated by modeling the association among different biological molecules based on multiple types of hig...
Autores principales: | Xiong, Lie, Kuan, Pei-Fen, Tian, Jianan, Keles, Sunduz, Wang, Sijian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648611/ https://www.ncbi.nlm.nih.gov/pubmed/26609213 http://dx.doi.org/10.4137/CIN.S16353 |
Ejemplares similares
-
Randomized boosting with multivariable base-learners for high-dimensional variable selection and prediction
por: Staerk, Christian, et al.
Publicado: (2021) -
Discovering Transcription Factor Binding Sites in Highly Repetitive Regions of Genomes with Multi-Read Analysis of ChIP-Seq Data
por: Chung, Dongjun, et al.
Publicado: (2011) -
Nonparametric relevance-shifted multiple testing procedures for the analysis of high-dimensional multivariate data with small sample sizes
por: Frömke, Cornelia, et al.
Publicado: (2008) -
FreeHi-C simulates high fidelity Hi-C data for benchmarking and data augmentation
por: Zheng, Ye, et al.
Publicado: (2019) -
Controlling false discoveries in high-dimensional situations: boosting with stability selection
por: Hofner, Benjamin, et al.
Publicado: (2015)