Cargando…

Can the neural–cortisol association be moderated by experience-induced changes in awareness?

Cortisol homeostasis is important for cognitive and affective functions that depend on cortisol-sensitive brain regions including the hippocampus and prefrontal cortex. Recent studies have shown that training induces changes in the brain. We report the findings of a longitudinal study that verified...

Descripción completa

Detalles Bibliográficos
Autores principales: Lau, Way K. W., Leung, Mei-Kei, Chan, Chetwyn C. H., Wong, Samuel S. Y., Lee, Tatia M. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4649618/
https://www.ncbi.nlm.nih.gov/pubmed/26577539
http://dx.doi.org/10.1038/srep16620
Descripción
Sumario:Cortisol homeostasis is important for cognitive and affective functions that depend on cortisol-sensitive brain regions including the hippocampus and prefrontal cortex. Recent studies have shown that training induces changes in the brain. We report the findings of a longitudinal study that verified the moderation effect of experience-induced changes in awareness on the neural–cortisol association in cortisol-sensitive brain regions. These findings provide the first piece of evidence that planned behavioral experience can moderate the neural–cortisol association. A range of changes in awareness was achieved in a sample of 21 Chinese participants, divided into two groups: Awareness-based compassion meditation (ABCM) (n = 10) and relaxation (n = 11). We observed that changes in awareness were significant moderators of hippocampal–cortisol changes. Furthermore, a significant negative association between changes in plasma cortisol level and the resting-state synchrony of the right hippocampal and insular-frontal-operculum regions was observed. These novel findings shed light on the inter-relationships between changes in hippocampal–cortisol levels and changes in awareness and preliminarily identify the neural underpinnings of interventions for cortisol-related abnormal functioning for further study.