Cargando…

Oseltamivir Expands Quasispecies of Influenza Virus through Cell-to-cell Transmission

The population of influenza virus consists of a huge variety of variants, called quasispecies, due to error-prone replication. Previously, we reported that progeny virions of influenza virus become infected to adjacent cells via cell-to-cell transmission pathway in the presence of oseltamivir. Durin...

Descripción completa

Detalles Bibliográficos
Autores principales: Mori, Kotaro, Murano, Kensaku, Ohniwa, Ryosuke L., Kawaguchi, Atsushi, Nagata, Kyosuke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4649863/
https://www.ncbi.nlm.nih.gov/pubmed/25772381
http://dx.doi.org/10.1038/srep09163
Descripción
Sumario:The population of influenza virus consists of a huge variety of variants, called quasispecies, due to error-prone replication. Previously, we reported that progeny virions of influenza virus become infected to adjacent cells via cell-to-cell transmission pathway in the presence of oseltamivir. During cell-to-cell transmission, viruses become infected to adjacent cells at high multiplicity since progeny virions are enriched on plasma membrane between infected cells and their adjacent cells. Co-infection with viral variants may rescue recessive mutations with each other. Thus, it is assumed that the cell-to-cell transmission causes expansion of virus quasispecies. Here, we have demonstrated that temperature-sensitive mutations remain in progeny viruses even at non-permissive temperature by co-infection in the presence of oseltamivir. This is possibly due to a multiplex infection through the cell-to-cell transmission by the addition of oseltamivir. Further, by the addition of oseltamivir, the number of missense mutation introduced by error-prone replication in segment 8 encoding NS1 was increased in a passage-dependent manner. The number of missense mutation in segment 5 encoding NP was not changed significantly, whereas silent mutation was increased. Taken together, we propose that oseltamivir expands influenza virus quasispecies via cell-to-cell transmission, and may facilitate the viral evolution and adaptation.