Cargando…

Brief inhalation of nitric oxide increases resuscitation success and improves 7-day-survival after cardiac arrest in rats: a randomized controlled animal study

INTRODUCTION: Inhaled nitric oxide (iNO) improves outcomes when given post systemic ischemia/reperfusion injury. iNO given during cardiopulmonary resuscitation (CPR) may therefore improve return of spontaneous circulation (ROSC) rates and functional outcome after cardiac arrest (CA). METHODS: Thirty...

Descripción completa

Detalles Bibliográficos
Autores principales: Brücken, Anne, Derwall, Matthias, Bleilevens, Christian, Stoppe, Christian, Götzenich, Andreas, Gaisa, Nadine T., Weis, Joachim, Nolte, Kay Wilhelm, Rossaint, Rolf, Ichinose, Fumito, Fries, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650396/
https://www.ncbi.nlm.nih.gov/pubmed/26577797
http://dx.doi.org/10.1186/s13054-015-1128-x
Descripción
Sumario:INTRODUCTION: Inhaled nitric oxide (iNO) improves outcomes when given post systemic ischemia/reperfusion injury. iNO given during cardiopulmonary resuscitation (CPR) may therefore improve return of spontaneous circulation (ROSC) rates and functional outcome after cardiac arrest (CA). METHODS: Thirty male Sprague-Dawley rats were subjected to 10 minutes of CA and at least 3 minutes of CPR. Animals were randomized to receive either 0 (n = 10, Control), 20 (n = 10, 20 ppm), or 40 (n = 10, 40 ppm) ppm iNO during CPR until 30 minutes after ROSC. A neurological deficit score was assessed daily for seven days following the experiment. On day 7, brains, hearts, and blood were sampled for histological and biochemical evaluation. RESULTS: During CPR, 20 ppm iNO significantly increased diastolic arterial pressure (Control: 57 ± 5.04 mmHg; 20 ppm: 71.57 ± 57.3 mmHg, p < 0.046) and decreased time to ROSC (Control: 842 ± 21 s; 20 ppm: 792 ± 5 s, (p = 0.02)). Thirty minutes following ROSC, 20 ppm iNO resulted in an increase in mean arterial pressure (Control: 83 ± 4 mmHg; 20 ppm: 98 ± 4 mmHg, p = 0.035), a less pronounced rise in lactate and inflammatory cytokine levels, and attenuated cardiac damage. Inhalation of NO at 20 ppm improved neurological outcomes in rats 2 to 7 days after CA and CPR. This translated into increases in 7 day survival (Control: 4; 20 ppm: 10; 40 ppm 6, (p ≤ 0.05 20 ppm vs Control and 40 ppm). CONCLUSIONS: Our study revealed that breathing NO during CPR markedly improved resuscitation success, 7-day neurological outcomes and survival in a rat model of VF-induced cardiac arrest and CPR. These results support the beneficial effects of NO inhalation after cardiac arrest and CPR.