Cargando…

Nano-Biomechanical Study of Spatio-Temporal Cytoskeleton Rearrangements that Determine Subcellular Mechanical Properties and Endothelial Permeability

The endothelial cell (EC) lining of the pulmonary vascular system forms a semipermeable barrier between blood and the interstitium and regulates various critical biochemical functions. Collectively, it represents a prototypical biomechanical system, where the complex hierarchical architecture, from...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xin, Bleher, Reiner, Brown, Mary E., Garcia, Joe G. N., Dudek, Steven M., Shekhawat, Gajendra S., Dravid, Vinayak P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650616/
https://www.ncbi.nlm.nih.gov/pubmed/26086333
http://dx.doi.org/10.1038/srep11097
_version_ 1782401523187187712
author Wang, Xin
Bleher, Reiner
Brown, Mary E.
Garcia, Joe G. N.
Dudek, Steven M.
Shekhawat, Gajendra S.
Dravid, Vinayak P.
author_facet Wang, Xin
Bleher, Reiner
Brown, Mary E.
Garcia, Joe G. N.
Dudek, Steven M.
Shekhawat, Gajendra S.
Dravid, Vinayak P.
author_sort Wang, Xin
collection PubMed
description The endothelial cell (EC) lining of the pulmonary vascular system forms a semipermeable barrier between blood and the interstitium and regulates various critical biochemical functions. Collectively, it represents a prototypical biomechanical system, where the complex hierarchical architecture, from the molecular scale to the cellular and tissue level, has an intimate and intricate relationship with its biological functions. We investigated the mechanical properties of human pulmonary artery endothelial cells (ECs) using atomic force microscopy (AFM). Concurrently, the wider distribution and finer details of the cytoskeletal nano-structure were examined using fluorescence microscopy (FM) and scanning transmission electron microscopy (STEM), respectively. These correlative measurements were conducted in response to the EC barrier-disrupting agent, thrombin, and barrier-enhancing agent, sphingosine 1-phosphate (S1P). Our new findings and analysis directly link the spatio-temporal complexities of cell re-modeling and cytoskeletal mechanical properties alteration. This work provides novel insights into the biomechanical function of the endothelial barrier and suggests similar opportunities for understanding the form-function relationship in other biomechanical subsystems.
format Online
Article
Text
id pubmed-4650616
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-46506162015-11-24 Nano-Biomechanical Study of Spatio-Temporal Cytoskeleton Rearrangements that Determine Subcellular Mechanical Properties and Endothelial Permeability Wang, Xin Bleher, Reiner Brown, Mary E. Garcia, Joe G. N. Dudek, Steven M. Shekhawat, Gajendra S. Dravid, Vinayak P. Sci Rep Article The endothelial cell (EC) lining of the pulmonary vascular system forms a semipermeable barrier between blood and the interstitium and regulates various critical biochemical functions. Collectively, it represents a prototypical biomechanical system, where the complex hierarchical architecture, from the molecular scale to the cellular and tissue level, has an intimate and intricate relationship with its biological functions. We investigated the mechanical properties of human pulmonary artery endothelial cells (ECs) using atomic force microscopy (AFM). Concurrently, the wider distribution and finer details of the cytoskeletal nano-structure were examined using fluorescence microscopy (FM) and scanning transmission electron microscopy (STEM), respectively. These correlative measurements were conducted in response to the EC barrier-disrupting agent, thrombin, and barrier-enhancing agent, sphingosine 1-phosphate (S1P). Our new findings and analysis directly link the spatio-temporal complexities of cell re-modeling and cytoskeletal mechanical properties alteration. This work provides novel insights into the biomechanical function of the endothelial barrier and suggests similar opportunities for understanding the form-function relationship in other biomechanical subsystems. Nature Publishing Group 2015-06-18 /pmc/articles/PMC4650616/ /pubmed/26086333 http://dx.doi.org/10.1038/srep11097 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Wang, Xin
Bleher, Reiner
Brown, Mary E.
Garcia, Joe G. N.
Dudek, Steven M.
Shekhawat, Gajendra S.
Dravid, Vinayak P.
Nano-Biomechanical Study of Spatio-Temporal Cytoskeleton Rearrangements that Determine Subcellular Mechanical Properties and Endothelial Permeability
title Nano-Biomechanical Study of Spatio-Temporal Cytoskeleton Rearrangements that Determine Subcellular Mechanical Properties and Endothelial Permeability
title_full Nano-Biomechanical Study of Spatio-Temporal Cytoskeleton Rearrangements that Determine Subcellular Mechanical Properties and Endothelial Permeability
title_fullStr Nano-Biomechanical Study of Spatio-Temporal Cytoskeleton Rearrangements that Determine Subcellular Mechanical Properties and Endothelial Permeability
title_full_unstemmed Nano-Biomechanical Study of Spatio-Temporal Cytoskeleton Rearrangements that Determine Subcellular Mechanical Properties and Endothelial Permeability
title_short Nano-Biomechanical Study of Spatio-Temporal Cytoskeleton Rearrangements that Determine Subcellular Mechanical Properties and Endothelial Permeability
title_sort nano-biomechanical study of spatio-temporal cytoskeleton rearrangements that determine subcellular mechanical properties and endothelial permeability
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650616/
https://www.ncbi.nlm.nih.gov/pubmed/26086333
http://dx.doi.org/10.1038/srep11097
work_keys_str_mv AT wangxin nanobiomechanicalstudyofspatiotemporalcytoskeletonrearrangementsthatdeterminesubcellularmechanicalpropertiesandendothelialpermeability
AT bleherreiner nanobiomechanicalstudyofspatiotemporalcytoskeletonrearrangementsthatdeterminesubcellularmechanicalpropertiesandendothelialpermeability
AT brownmarye nanobiomechanicalstudyofspatiotemporalcytoskeletonrearrangementsthatdeterminesubcellularmechanicalpropertiesandendothelialpermeability
AT garciajoegn nanobiomechanicalstudyofspatiotemporalcytoskeletonrearrangementsthatdeterminesubcellularmechanicalpropertiesandendothelialpermeability
AT dudekstevenm nanobiomechanicalstudyofspatiotemporalcytoskeletonrearrangementsthatdeterminesubcellularmechanicalpropertiesandendothelialpermeability
AT shekhawatgajendras nanobiomechanicalstudyofspatiotemporalcytoskeletonrearrangementsthatdeterminesubcellularmechanicalpropertiesandendothelialpermeability
AT dravidvinayakp nanobiomechanicalstudyofspatiotemporalcytoskeletonrearrangementsthatdeterminesubcellularmechanicalpropertiesandendothelialpermeability