Cargando…
Contributions of wheat and maize residues to soil organic carbon under long-term rotation in north China
Soil organic carbon (SOC) dynamics in agro-ecosystem is largely influenced by cropping. However, quantifying the contributions of various crops has been lacking. Here we employed a stable isotopic approach to evaluate the contributions of wheat and maize residues to SOC at three long-term experiment...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650633/ https://www.ncbi.nlm.nih.gov/pubmed/26100739 http://dx.doi.org/10.1038/srep11409 |
Sumario: | Soil organic carbon (SOC) dynamics in agro-ecosystem is largely influenced by cropping. However, quantifying the contributions of various crops has been lacking. Here we employed a stable isotopic approach to evaluate the contributions of wheat and maize residues to SOC at three long-term experimental sites in north China. Soil samples were collected from 0–20, 20–40, 40–60, 60–80 and 80–100 cm after 13 and 20 years of wheat-maize rotation, and SOC and its stable (13)C composition were determined. Our data showed that the δ(13)C value of SOC varied, on average, from −22.1‰ in the 0–20 cm to −21.5‰ in the 80–100 cm. Carbon input through maize residues ranged from 35% to 68% whereas the contribution of maize residues to SOC (0–40 cm) ranged from 28% to 40%. Our analyses suggested that the retention coefficient was in the range of 8.0–13.6% for maize residues and 16.5–28.5% for wheat residues. The two-fold higher retention coefficient of wheat versus maize residues was due to the differences in the quality of residues and probably also in the temperature during the growing season. Our study highlighted the importance of crop management on carbon sequestration in agricultural lands. |
---|