Cargando…
Efficient delivery of antigen to DCs using yeast-derived microparticles
Some pathogens can be naturally recognized and internalized by antigen presentation cells (APCs) in vivo, providing a platform for efficient vaccine delivery. However, the biosafety concerns discourage the clinical applications of live pathogens. Here, yeast-derived microparticles were prepared for...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650639/ https://www.ncbi.nlm.nih.gov/pubmed/26022399 http://dx.doi.org/10.1038/srep10687 |
Sumario: | Some pathogens can be naturally recognized and internalized by antigen presentation cells (APCs) in vivo, providing a platform for efficient vaccine delivery. However, the biosafety concerns discourage the clinical applications of live pathogens. Here, yeast-derived microparticles were prepared for cancer vaccine delivery. By chemical treatment of bread yeast, capsular yeast shell (YS) microparticles were obtained. Ovalbumin (OVA), as a model antigen, was conjugated to the surface of YS. Results indicated that these YS microparticles with a uniform size of ~3.4 μm can be recognized and internalized by dendritic cells (DCs). The YS-mediated antigen delivery can enhance the cellular uptake of antigen by DCs, promote the maturation of DCs, and trigger DCs to release immune co-stimulatory molecules. Immunization with YS-mediated antigen can induce an effective immune response against tumor cells in vivo, with contributions from both humoral and cellular immunity. This work suggests that yeast shell microparticles as efficient vaccine delivery system has promising applications in cancer immunotherapy. |
---|