Cargando…
Near IR fluorescent conjugated poly(ethylene glycol)bisphosphonate nanoparticles for in vivo bone targeting in a young mouse model
Bisphosphonate (BP) compounds are widely used in the treatment of bone disorders. This group of drugs with a high affinity to Ca(+2) ions is rapidly attracted to bone mineral, especially in areas of high resorption. We have engineered unique biodegradable BP nanoparticles (NPs) by dispersion co-poly...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650844/ https://www.ncbi.nlm.nih.gov/pubmed/26577112 http://dx.doi.org/10.1186/s12951-015-0126-0 |
_version_ | 1782401569104330752 |
---|---|
author | Rudnick-Glick, S. Corem-Salkmon, E. Grinberg, I. Yehuda, R. Margel, S. |
author_facet | Rudnick-Glick, S. Corem-Salkmon, E. Grinberg, I. Yehuda, R. Margel, S. |
author_sort | Rudnick-Glick, S. |
collection | PubMed |
description | Bisphosphonate (BP) compounds are widely used in the treatment of bone disorders. This group of drugs with a high affinity to Ca(+2) ions is rapidly attracted to bone mineral, especially in areas of high resorption. We have engineered unique biodegradable BP nanoparticles (NPs) by dispersion co-polymerization of the monomers methacrylate-PEG-BP) and (3-Aminopropyl)mathacrylamide) with the crosslinker monomer tetra ethylene glycol diacrylate. These NPs possess a dual functionality: (1) covalent attachment of a dye (e.g. near IR dye) or a drug to the nanoparticles through the primary amine groups on the surface of the NPs; (2) chelation to the bone mineral hydroxyapatite through the BP on the surface of the NPs. This study describes the uptake of the unique near IR fluorescent Cy 7-conjugated BP NPs in bone of a young mouse model. Blood half-life studies revealed a relatively long half-life (approximately 5 h) due to a high concentration of PEG in the BP NPs as well as a relatively long whole body clearance (approximately 2 weeks). Body distribution studies showed a specific uptake of the BP NPs in bone. These unique engineered BP NPs are planned to be utilized in future work for diagnostic and drug delivery systems that are targeted to bone disorders. |
format | Online Article Text |
id | pubmed-4650844 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-46508442015-11-19 Near IR fluorescent conjugated poly(ethylene glycol)bisphosphonate nanoparticles for in vivo bone targeting in a young mouse model Rudnick-Glick, S. Corem-Salkmon, E. Grinberg, I. Yehuda, R. Margel, S. J Nanobiotechnology Research Bisphosphonate (BP) compounds are widely used in the treatment of bone disorders. This group of drugs with a high affinity to Ca(+2) ions is rapidly attracted to bone mineral, especially in areas of high resorption. We have engineered unique biodegradable BP nanoparticles (NPs) by dispersion co-polymerization of the monomers methacrylate-PEG-BP) and (3-Aminopropyl)mathacrylamide) with the crosslinker monomer tetra ethylene glycol diacrylate. These NPs possess a dual functionality: (1) covalent attachment of a dye (e.g. near IR dye) or a drug to the nanoparticles through the primary amine groups on the surface of the NPs; (2) chelation to the bone mineral hydroxyapatite through the BP on the surface of the NPs. This study describes the uptake of the unique near IR fluorescent Cy 7-conjugated BP NPs in bone of a young mouse model. Blood half-life studies revealed a relatively long half-life (approximately 5 h) due to a high concentration of PEG in the BP NPs as well as a relatively long whole body clearance (approximately 2 weeks). Body distribution studies showed a specific uptake of the BP NPs in bone. These unique engineered BP NPs are planned to be utilized in future work for diagnostic and drug delivery systems that are targeted to bone disorders. BioMed Central 2015-11-14 /pmc/articles/PMC4650844/ /pubmed/26577112 http://dx.doi.org/10.1186/s12951-015-0126-0 Text en © Rudnick-Glick et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Rudnick-Glick, S. Corem-Salkmon, E. Grinberg, I. Yehuda, R. Margel, S. Near IR fluorescent conjugated poly(ethylene glycol)bisphosphonate nanoparticles for in vivo bone targeting in a young mouse model |
title | Near IR fluorescent conjugated poly(ethylene glycol)bisphosphonate nanoparticles for in vivo bone targeting in a young mouse model |
title_full | Near IR fluorescent conjugated poly(ethylene glycol)bisphosphonate nanoparticles for in vivo bone targeting in a young mouse model |
title_fullStr | Near IR fluorescent conjugated poly(ethylene glycol)bisphosphonate nanoparticles for in vivo bone targeting in a young mouse model |
title_full_unstemmed | Near IR fluorescent conjugated poly(ethylene glycol)bisphosphonate nanoparticles for in vivo bone targeting in a young mouse model |
title_short | Near IR fluorescent conjugated poly(ethylene glycol)bisphosphonate nanoparticles for in vivo bone targeting in a young mouse model |
title_sort | near ir fluorescent conjugated poly(ethylene glycol)bisphosphonate nanoparticles for in vivo bone targeting in a young mouse model |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650844/ https://www.ncbi.nlm.nih.gov/pubmed/26577112 http://dx.doi.org/10.1186/s12951-015-0126-0 |
work_keys_str_mv | AT rudnickglicks nearirfluorescentconjugatedpolyethyleneglycolbisphosphonatenanoparticlesforinvivobonetargetinginayoungmousemodel AT coremsalkmone nearirfluorescentconjugatedpolyethyleneglycolbisphosphonatenanoparticlesforinvivobonetargetinginayoungmousemodel AT grinbergi nearirfluorescentconjugatedpolyethyleneglycolbisphosphonatenanoparticlesforinvivobonetargetinginayoungmousemodel AT yehudar nearirfluorescentconjugatedpolyethyleneglycolbisphosphonatenanoparticlesforinvivobonetargetinginayoungmousemodel AT margels nearirfluorescentconjugatedpolyethyleneglycolbisphosphonatenanoparticlesforinvivobonetargetinginayoungmousemodel |