Cargando…
Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape
Habitat loss and fragmentation can affect the persistence of populations by reducing connectivity and restricting the ability of individuals to disperse across landscapes. Dispersal corridors promote population connectivity and therefore play important roles in maintaining gene flow in natural popul...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651334/ https://www.ncbi.nlm.nih.gov/pubmed/26580222 http://dx.doi.org/10.1371/journal.pone.0140938 |
_version_ | 1782401623588339712 |
---|---|
author | Adams, Rachael V. Burg, Theresa M. |
author_facet | Adams, Rachael V. Burg, Theresa M. |
author_sort | Adams, Rachael V. |
collection | PubMed |
description | Habitat loss and fragmentation can affect the persistence of populations by reducing connectivity and restricting the ability of individuals to disperse across landscapes. Dispersal corridors promote population connectivity and therefore play important roles in maintaining gene flow in natural populations inhabiting fragmented landscapes. In the prairies, forests are restricted to riparian areas along river systems which act as important dispersal corridors for forest dependent species across large expanses of unsuitable grassland habitat. However, natural and anthropogenic barriers within riparian systems have fragmented these forested habitats. In this study, we used microsatellite markers to assess the fine-scale genetic structure of a forest-dependent species, the black-capped chickadee (Poecile atricapillus), along 10 different river systems in Southern Alberta. Using a landscape genetic approach, landscape features (e.g., land cover) were found to have a significant effect on patterns of genetic differentiation. Populations are genetically structured as a result of natural breaks in continuous habitat at small spatial scales, but the artificial barriers we tested do not appear to restrict gene flow. Dispersal between rivers is impeded by grasslands, evident from isolation of nearby populations (~ 50 km apart), but also within river systems by large treeless canyons (>100 km). Significant population genetic differentiation within some rivers corresponded with zones of different cottonwood (riparian poplar) tree species and their hybrids. This study illustrates the importance of considering the impacts of habitat fragmentation at small spatial scales as well as other ecological processes to gain a better understanding of how organisms respond to their environmental connectivity. Here, even in a common and widespread songbird with high dispersal potential, small breaks in continuous habitats strongly influenced the spatial patterns of genetic variation. |
format | Online Article Text |
id | pubmed-4651334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46513342015-11-25 Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape Adams, Rachael V. Burg, Theresa M. PLoS One Research Article Habitat loss and fragmentation can affect the persistence of populations by reducing connectivity and restricting the ability of individuals to disperse across landscapes. Dispersal corridors promote population connectivity and therefore play important roles in maintaining gene flow in natural populations inhabiting fragmented landscapes. In the prairies, forests are restricted to riparian areas along river systems which act as important dispersal corridors for forest dependent species across large expanses of unsuitable grassland habitat. However, natural and anthropogenic barriers within riparian systems have fragmented these forested habitats. In this study, we used microsatellite markers to assess the fine-scale genetic structure of a forest-dependent species, the black-capped chickadee (Poecile atricapillus), along 10 different river systems in Southern Alberta. Using a landscape genetic approach, landscape features (e.g., land cover) were found to have a significant effect on patterns of genetic differentiation. Populations are genetically structured as a result of natural breaks in continuous habitat at small spatial scales, but the artificial barriers we tested do not appear to restrict gene flow. Dispersal between rivers is impeded by grasslands, evident from isolation of nearby populations (~ 50 km apart), but also within river systems by large treeless canyons (>100 km). Significant population genetic differentiation within some rivers corresponded with zones of different cottonwood (riparian poplar) tree species and their hybrids. This study illustrates the importance of considering the impacts of habitat fragmentation at small spatial scales as well as other ecological processes to gain a better understanding of how organisms respond to their environmental connectivity. Here, even in a common and widespread songbird with high dispersal potential, small breaks in continuous habitats strongly influenced the spatial patterns of genetic variation. Public Library of Science 2015-11-18 /pmc/articles/PMC4651334/ /pubmed/26580222 http://dx.doi.org/10.1371/journal.pone.0140938 Text en © 2015 Adams, Burg http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Adams, Rachael V. Burg, Theresa M. Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape |
title | Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape |
title_full | Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape |
title_fullStr | Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape |
title_full_unstemmed | Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape |
title_short | Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape |
title_sort | gene flow of a forest-dependent bird across a fragmented landscape |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651334/ https://www.ncbi.nlm.nih.gov/pubmed/26580222 http://dx.doi.org/10.1371/journal.pone.0140938 |
work_keys_str_mv | AT adamsrachaelv geneflowofaforestdependentbirdacrossafragmentedlandscape AT burgtheresam geneflowofaforestdependentbirdacrossafragmentedlandscape |