Cargando…
Stiffening of the Extrapulmonary Arteries From Rats in Chronic Hypoxic Pulmonary Hypertension
Changes in the compliance properties of large blood vessels are critical determinants of ventricular afterload and ultimately dysfunction. Little is known of the mechanical properties of large vessels exhibiting pulmonary hypertension, particularly the trunk and right main artery. We initiated a stu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
[Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651618/ https://www.ncbi.nlm.nih.gov/pubmed/27096124 http://dx.doi.org/10.6028/jres.113.018 |
Sumario: | Changes in the compliance properties of large blood vessels are critical determinants of ventricular afterload and ultimately dysfunction. Little is known of the mechanical properties of large vessels exhibiting pulmonary hypertension, particularly the trunk and right main artery. We initiated a study to investigate the influence of chronic hypoxic pulmonary hypertension on the mechanical properties of the extrapulmonary arteries of rats. One group of animals was housed at the equivalent of 5000 m elevation for three weeks and the other held at ambient conditions of ~1600 m. The two groups were matched in age and gender. The animals exposed to hypobaric hypoxia exhibited signs of pulmonary hypertension, as evidenced by an increase in the RV/(LV+S) heart weight ratio. The extrapulmonary arteries of the hypoxic animals were also thicker than those of the control population. Histological examination revealed increased thickness of the media and additional deposits of collagen in the adventitia. The mechanical properties of the trunk, and the right and left main pulmonary arteries were assessed; at a representative pressure (7 kPa), the two populations exhibited different quantities of stretch for each section. At higher pressures we noted less deformation among the arteries from hypoxic animals as compared with controls. A four-parameter constitutive model was employed to fit and analyze the data. We conclude that chronic hypoxic pulmonary hypertension is associated with a stiffening of all the extrapulmonary arteries. |
---|