Cargando…

Comparative Genome and Network Centrality Analysis to Identify Drug Targets of Mycobacterium tuberculosis H37Rv

Potential drug targets of Mycobacterium tuberculosis H37Rv were identified through systematically integrated comparative genome and network centrality analysis. The comparative analysis of the complete genome of Mycobacterium tuberculosis H37Rv against Database of Essential Genes (DEG) yields a list...

Descripción completa

Detalles Bibliográficos
Autores principales: Melak, Tilahun, Gakkhar, Sunita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651637/
https://www.ncbi.nlm.nih.gov/pubmed/26618166
http://dx.doi.org/10.1155/2015/212061
Descripción
Sumario:Potential drug targets of Mycobacterium tuberculosis H37Rv were identified through systematically integrated comparative genome and network centrality analysis. The comparative analysis of the complete genome of Mycobacterium tuberculosis H37Rv against Database of Essential Genes (DEG) yields a list of proteins which are essential for the growth and survival of the pathogen. Those proteins which are nonhomologous with human were selected. The resulting proteins were then prioritized by using the four network centrality measures: degree, closeness, betweenness, and eigenvector. Proteins whose centrality value is close to the centre of gravity of the interactome network were proposed as a final list of potential drug targets for the pathogen. The use of an integrated approach is believed to increase the success of the drug target identification process. For the purpose of validation, selective comparisons have been made among the proposed targets and previously identified drug targets by various other methods. About half of these proteins have been already reported as potential drug targets. We believe that the identified proteins will be an important input to experimental study which in the way could save considerable amount of time and cost of drug target discovery.