Cargando…
Combined Mapping of Multiple clUsteriNg ALgorithms (COMMUNAL): A Robust Method for Selection of Cluster Number, K
In order to discover new subsets (clusters) of a data set, researchers often use algorithms that perform unsupervised clustering, namely, the algorithmic separation of a dataset into some number of distinct clusters. Deciding whether a particular separation (or number of clusters, K) is correct is a...
Autores principales: | Sweeney, Timothy E., Chen, Albert C., Gevaert, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652212/ https://www.ncbi.nlm.nih.gov/pubmed/26581809 http://dx.doi.org/10.1038/srep16971 |
Ejemplares similares
-
Cross-Clustering: A Partial Clustering Algorithm with Automatic Estimation of the Number of Clusters
por: Tellaroli, Paola, et al.
Publicado: (2016) -
Robustness of the ATLAS pixel clustering neural network algorithm
por: Sidebo, Edvin
Publicado: (2016) -
Robustness of the ATLAS pixel clustering neural network algorithm
por: Sidebo, Per Edvin
Publicado: (2016) -
A robustness metric for biological data clustering algorithms
por: Lu, Yuping, et al.
Publicado: (2019) -
Selecting Clustering Algorithms for Identity-By-Descent Mapping
por: Shemirani, Ruhollah, et al.
Publicado: (2023)