Cargando…

Stable Lithium Argon compounds under high pressure

High pressure can fundamentally alter the bonding patterns of chemical elements. Its effects include stimulating elements thought to be “inactive” to form unexpectedly stable compounds with unusual chemical and physical properties. Here, using an unbiased structure search method based on CALYPSO met...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiaofeng, Hermann, Andreas, Peng, Feng, Lv, Jian, Wang, Yanchao, Wang, Hui, Ma, Yanming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652216/
https://www.ncbi.nlm.nih.gov/pubmed/26582083
http://dx.doi.org/10.1038/srep16675
Descripción
Sumario:High pressure can fundamentally alter the bonding patterns of chemical elements. Its effects include stimulating elements thought to be “inactive” to form unexpectedly stable compounds with unusual chemical and physical properties. Here, using an unbiased structure search method based on CALYPSO methodology and density functional total energy calculations, the phase stabilities and crystal structures of Li−Ar compounds are systematically investigated at high pressure up to 300 GPa. Two unexpected Li(m)Ar(n) compounds (LiAr and Li(3)Ar) are predicted to be stable above 112 GPa and 119 GPa, respectively. A detailed analysis of the electronic structure of LiAr and Li(3)Ar shows that Ar in these compounds attracts electrons and thus behaves as an oxidizing agent. This is markedly different from the hitherto established chemical reactivity of Ar. Moreover, we predict that the P4/mmm phase of Li(3)Ar has a superconducting transition temperature of 17.6 K at 120 GPa.