Cargando…
How to model temporal changes in comorbidity for cancer patients using prospective cohort data
BACKGROUND: The presence of comorbid conditions is strongly related to survival and also affects treatment choices in cancer patients. This comorbidity is often quantified by the Charlson Comorbidity Index (CCI) using specific weights (1, 2, 3, or 6) for different comorbidities. It has been shown th...
Autores principales: | Lindhagen, Lars, Van Hemelrijck, Mieke, Robinson, David, Stattin, Pär, Garmo, Hans |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652373/ https://www.ncbi.nlm.nih.gov/pubmed/26582418 http://dx.doi.org/10.1186/s12911-015-0217-8 |
Ejemplares similares
-
How to measure temporal changes in care pathways for chronic diseases using health care registry data
por: Ventimiglia, Eugenio, et al.
Publicado: (2019) -
Population-based estimates of age and comorbidity specific life expectancy: a first application in Swedish males
por: Van Hemelrijck, Mieke, et al.
Publicado: (2022) -
Cohort Profile Update: The National Prostate Cancer Register of Sweden and Prostate Cancer data Base—a refined prostate cancer trajectory
por: Van Hemelrijck, Mieke, et al.
Publicado: (2016) -
Prospective study of Type 2 diabetes mellitus, anti‐diabetic drugs and risk of prostate cancer
por: Häggström, Christel, et al.
Publicado: (2016) -
Heterogeneity in risk of prostate cancer: A
Swedish population‐based cohort study of competing risks and Type 2 diabetes mellitus
por: Häggström, Christel, et al.
Publicado: (2018)