Cargando…
Evaluation of data discretization methods to derive platform independent isoform expression signatures for multi-class tumor subtyping
BACKGROUND: Many supervised learning algorithms have been applied in deriving gene signatures for patient stratification from gene expression data. However, transferring the multi-gene signatures from one analytical platform to another without loss of classification accuracy is a major challenge. He...
Autores principales: | Jung, Segun, Bi, Yingtao, Davuluri, Ramana V |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652565/ https://www.ncbi.nlm.nih.gov/pubmed/26576613 http://dx.doi.org/10.1186/1471-2164-16-S11-S3 |
Ejemplares similares
-
Isoform-level gene signature improves prognostic stratification and accurately classifies glioblastoma subtypes
por: Pal, Sharmistha, et al.
Publicado: (2014) -
Comparative evaluation of isoform-level gene expression estimation algorithms for RNA-seq and exon-array platforms
por: Dapas, Matthew, et al.
Publicado: (2017) -
Isoform level expression profiles provide better cancer signatures than gene level expression profiles
por: Zhang, ZhongFa, et al.
Publicado: (2013) -
IsoformEx: isoform level gene expression estimation using weighted non-negative least squares from mRNA-Seq data
por: Kim, Hyunsoo, et al.
Publicado: (2011) -
Identification of Genetic and Epigenetic Variants Associated with Breast Cancer Prognosis by Integrative Bioinformatics Analysis
por: Shilpi, Arunima, et al.
Publicado: (2017)