Cargando…
Microarray Analysis of Human Blood During Electroconvulsive Therapy
Electroconvulsive therapy (ECT) is currently regarded as a significant treatment option for intractable psychiatric disorders, such as catatonic schizophrenia or treatment-resistant depression; however, the underlying molecular mechanism for its therapeutic effect remains obscure. METHODS: Employing...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652629/ https://www.ncbi.nlm.nih.gov/pubmed/25807342 http://dx.doi.org/10.1097/YCT.0000000000000234 |
Sumario: | Electroconvulsive therapy (ECT) is currently regarded as a significant treatment option for intractable psychiatric disorders, such as catatonic schizophrenia or treatment-resistant depression; however, the underlying molecular mechanism for its therapeutic effect remains obscure. METHODS: Employing microarray analysis (Human Genome U133 Plus 2.0 Array; Affymetrix, United States) of cDNA derived from the peripheral blood of patients with catatonic schizophrenia (n = 5), we detected a significant change in 145 genes (0.68%) before and after modified ECT (mECT). Moreover, we performed quantitative polymerase chain reaction validation of genes that had previously been suggested to be functionally related to schizophrenia. RESULTS: Of 4 genes examined (AKT3, TCF7, PPP3R1, and GADD45B), only TCF7 was increased during the mECT procedure (P = 0.0025). DISCUSSION: This study describes the first attempt to uncover the molecular mechanism of mECT using a microarray assay of mRNA derived from peripheral blood, and our results suggest that the TCF family may play a role in the functional mechanism of mECT. |
---|