Cargando…
Correcting systematic bias and instrument measurement drift with mzRefinery
Motivation: Systematic bias in mass measurement adversely affects data quality and negates the advantages of high precision instruments. Results: We introduce the mzRefinery tool for calibration of mass spectrometry data files. Using confident peptide spectrum matches, three different calibration me...
Autores principales: | Gibbons, Bryson C., Chambers, Matthew C., Monroe, Matthew E., Tabb, David L., Payne, Samuel H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653383/ https://www.ncbi.nlm.nih.gov/pubmed/26243018 http://dx.doi.org/10.1093/bioinformatics/btv437 |
Ejemplares similares
-
mzRAPP: a tool for reliability assessment of data pre-processing in non-targeted metabolomics
por: El Abiead, Yasin, et al.
Publicado: (2021) -
mzMatch–ISO: an R tool for the annotation and relative quantification
of isotope-labelled mass spectrometry data
por: Chokkathukalam, Achuthanunni, et al.
Publicado: (2013) -
mzML2ISA & nmrML2ISA: generating enriched ISA-Tab metadata files from metabolomics XML data
por: Larralde, Martin, et al.
Publicado: (2017) -
GCparagon: evaluating and correcting GC biases in cell-free DNA at the fragment level
por: Spiegl, Benjamin, et al.
Publicado: (2023) -
SAMStat: monitoring biases in next generation sequencing data
por: Lassmann, Timo, et al.
Publicado: (2011)