Cargando…
Use of artificial intelligence methods for classifying diabetic patients with polyneuropathy
Autores principales: | Gomes, Aline Arcanjo, Suda, Eneida Yuri, Sartor, Cristina Dallemole, Ortega, Neli Regina Siqueira, Watari, Ricky, Vigneron, Vincent, Sacco, Isabel CN |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653495/ http://dx.doi.org/10.1186/1758-5996-7-S1-A4 |
Ejemplares similares
-
An 'Importance' Map of Signs and Symptoms to Classify Diabetic Polyneuropathy: An Exploratory Data Analysis
por: Sacco, Isabel C. N., et al.
Publicado: (2015) -
Effect of diabetic neuropathy severity classified by a fuzzy model in muscle dynamics during gait
por: Watari, Ricky, et al.
Publicado: (2014) -
Effects of a combined strengthening, stretching and functional training program versus usual-care on gait biomechanics and foot function for diabetic neuropathy: a randomized controlled trial
por: Sartor, Cristina Dallemole, et al.
Publicado: (2012) -
Recognition of Foot-Ankle Movement Patterns in Long-Distance Runners With Different Experience Levels Using Support Vector Machines
por: Suda, Eneida Yuri, et al.
Publicado: (2020) -
Classification of the severity of diabetic neuropathy: a new approach taking uncertainties into account using fuzzy logic
por: Picon, Andreja P, et al.
Publicado: (2012)