Cargando…

Evolution of the statistical distribution in a topological defect network

The complex networks of numerous topological defects in hexagonal manganites are highly relevant to vastly different phenomena from the birth of our cosmos to superfluidity transition. The topological defects in hexagonal manganites form two types of domain networks: type-I without and type-II with...

Descripción completa

Detalles Bibliográficos
Autores principales: Xue, Fei, Wang, Xueyun, socolenco, Ion, Gu, Yijia, Chen, Long-Qing, Cheong, Sang-Wook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653636/
https://www.ncbi.nlm.nih.gov/pubmed/26586339
http://dx.doi.org/10.1038/srep17057
Descripción
Sumario:The complex networks of numerous topological defects in hexagonal manganites are highly relevant to vastly different phenomena from the birth of our cosmos to superfluidity transition. The topological defects in hexagonal manganites form two types of domain networks: type-I without and type-II with electric self-poling. A combined phase-field simulations and experimental study shows that the frequencies of domains with N-sides, i.e. of N-gons, in a type-I network are fitted by a lognormal distribution, whereas those in type-II display a scale-free power-law distribution with exponent ∼2. A preferential attachment process that N-gons with a larger N have higher probability of coalescence is responsible for the emergence of the scale-free networks. Since the domain networks can be observed, analyzed, and manipulated at room temperature, hexagonal manganites provide a unique opportunity to explore how the statistical distribution of a topological defect network evolves with an external electric field.