Cargando…

Temperature measurements in trauma patients: is the ear the key to the core?

INTRODUCTION: It is important to monitor the core temperature in a severely injured patient. The choice of method is controversial, and different thermometers and sites for measurement are used. The aim of this study was to investigate continuous epitympanic temperature measurement using an auditory...

Descripción completa

Detalles Bibliográficos
Autores principales: Uleberg, O, Eidstuen, SC, Vangberg, G, Skogvoll, E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653897/
https://www.ncbi.nlm.nih.gov/pubmed/26585382
http://dx.doi.org/10.1186/s13049-015-0178-z
Descripción
Sumario:INTRODUCTION: It is important to monitor the core temperature in a severely injured patient. The choice of method is controversial, and different thermometers and sites for measurement are used. The aim of this study was to investigate continuous epitympanic temperature measurement using an auditory canal sensor in potentially severely injured patients and to compare this method with other commonly used devices. METHODS: In this cohort of potentially severely injured patients, the core temperature was registered continuously using an epitympanic sensor in the auditory canal, beginning at the accident scene through the first hours after admittance to the hospital. According to clinical practice, other methods of measurement were employed during pre- and in-hospital diagnostics and therapeutics. The consistency between different methods was analysed using Bland-Altman plots, and the limits of agreement (LOA) and bias between methods was estimated. RESULTS: During the study period, 18 patients were included. A total of 393 temperature measurements were obtained using seven different methods. We found that temperature measurements in the auditory canal agreed satisfactorily with most other types of measurements. The most consistent measurement was observed with bladder measurements (bias 0.43 °C, LOA −0.47, 1.33 °C), which was constant over the temperature range investigated (30.0 - 38.3 °C). CONCLUSION: Epitympanic temperature measurement in potentially severely injured patients was consistent with other methods that were commonly used to measure core temperature. The difference between measurement methods appeared to be constant over the relevant temperature range. Continuous epitympanic thermometry can be considered a reliable, cost-effective and simple alternative compared with more invasive methods of thermometry.