Cargando…
Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils
Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollag...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653952/ https://www.ncbi.nlm.nih.gov/pubmed/25153614 http://dx.doi.org/10.1016/j.jmbbm.2014.07.008 |
_version_ | 1782402008802656256 |
---|---|
author | Depalle, Baptiste Qin, Zhao Shefelbine, Sandra J. Buehler, Markus J. |
author_facet | Depalle, Baptiste Qin, Zhao Shefelbine, Sandra J. Buehler, Markus J. |
author_sort | Depalle, Baptiste |
collection | PubMed |
description | Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength. |
format | Online Article Text |
id | pubmed-4653952 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-46539522015-12-17 Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils Depalle, Baptiste Qin, Zhao Shefelbine, Sandra J. Buehler, Markus J. J Mech Behav Biomed Mater Research Paper Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength. Elsevier 2015-12 /pmc/articles/PMC4653952/ /pubmed/25153614 http://dx.doi.org/10.1016/j.jmbbm.2014.07.008 Text en © 2014 The Authors http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). |
spellingShingle | Research Paper Depalle, Baptiste Qin, Zhao Shefelbine, Sandra J. Buehler, Markus J. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils |
title | Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils |
title_full | Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils |
title_fullStr | Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils |
title_full_unstemmed | Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils |
title_short | Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils |
title_sort | influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653952/ https://www.ncbi.nlm.nih.gov/pubmed/25153614 http://dx.doi.org/10.1016/j.jmbbm.2014.07.008 |
work_keys_str_mv | AT depallebaptiste influenceofcrosslinkstructuredensityandmechanicalpropertiesinthemesoscaledeformationmechanismsofcollagenfibrils AT qinzhao influenceofcrosslinkstructuredensityandmechanicalpropertiesinthemesoscaledeformationmechanismsofcollagenfibrils AT shefelbinesandraj influenceofcrosslinkstructuredensityandmechanicalpropertiesinthemesoscaledeformationmechanismsofcollagenfibrils AT buehlermarkusj influenceofcrosslinkstructuredensityandmechanicalpropertiesinthemesoscaledeformationmechanismsofcollagenfibrils |