Cargando…
Gradient Matching Methods for Computational Inference in Mechanistic Models for Systems Biology: A Review and Comparative Analysis
Parameter inference in mathematical models of biological pathways, expressed as coupled ordinary differential equations (ODEs), is a challenging problem in contemporary systems biology. Conventional methods involve repeatedly solving the ODEs by numerical integration, which is computationally onerou...
Autores principales: | Macdonald, Benn, Husmeier, Dirk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654429/ https://www.ncbi.nlm.nih.gov/pubmed/26636071 http://dx.doi.org/10.3389/fbioe.2015.00180 |
Ejemplares similares
-
Statistical inference in mechanistic models: time warping for improved gradient matching
por: Niu, Mu, et al.
Publicado: (2017) -
Approximate parameter inference in systems biology using gradient matching: a comparative evaluation
por: Macdonald, Benn, et al.
Publicado: (2016) -
Approximate Bayesian inference in semi-mechanistic models
por: Aderhold, Andrej, et al.
Publicado: (2016) -
Editorial: Computational Methods for Understanding Complexity: The Use of Formal Methods in Biology
por: Rosenblueth, David A.
Publicado: (2016) -
ShinyKGode: an interactive application for ODE parameter inference using gradient matching
por: Wandy, Joe, et al.
Publicado: (2018)