Cargando…

Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation

The effectiveness of stem-cell therapies has been hampered by cell death and limited control over fate(1). These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype(2–4). Ste...

Descripción completa

Detalles Bibliográficos
Autores principales: Huebsch, Nathaniel, Lippens, Evi, Lee, Kangwon, Mehta, Manav, Koshy, Sandeep T, Darnell, Max C, Desai, Rajiv, Madl, Christopher M., Xu, Maria, Zhao, Xuanhe, Chaudhuri, Ovijit, Verbeke, Catia, Kim, Woo Seob, Alim, Karen, Mammoto, Akiko, Ingber, Donald E., Duda, Georg N, Mooney, David J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654683/
https://www.ncbi.nlm.nih.gov/pubmed/26366848
http://dx.doi.org/10.1038/nmat4407
Descripción
Sumario:The effectiveness of stem-cell therapies has been hampered by cell death and limited control over fate(1). These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype(2–4). Stem cell behavior can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials(5–7), yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem-cell behaviors in situ.