Cargando…
Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation
The effectiveness of stem-cell therapies has been hampered by cell death and limited control over fate(1). These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype(2–4). Ste...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654683/ https://www.ncbi.nlm.nih.gov/pubmed/26366848 http://dx.doi.org/10.1038/nmat4407 |
_version_ | 1782402090420666368 |
---|---|
author | Huebsch, Nathaniel Lippens, Evi Lee, Kangwon Mehta, Manav Koshy, Sandeep T Darnell, Max C Desai, Rajiv Madl, Christopher M. Xu, Maria Zhao, Xuanhe Chaudhuri, Ovijit Verbeke, Catia Kim, Woo Seob Alim, Karen Mammoto, Akiko Ingber, Donald E. Duda, Georg N Mooney, David J. |
author_facet | Huebsch, Nathaniel Lippens, Evi Lee, Kangwon Mehta, Manav Koshy, Sandeep T Darnell, Max C Desai, Rajiv Madl, Christopher M. Xu, Maria Zhao, Xuanhe Chaudhuri, Ovijit Verbeke, Catia Kim, Woo Seob Alim, Karen Mammoto, Akiko Ingber, Donald E. Duda, Georg N Mooney, David J. |
author_sort | Huebsch, Nathaniel |
collection | PubMed |
description | The effectiveness of stem-cell therapies has been hampered by cell death and limited control over fate(1). These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype(2–4). Stem cell behavior can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials(5–7), yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem-cell behaviors in situ. |
format | Online Article Text |
id | pubmed-4654683 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
record_format | MEDLINE/PubMed |
spelling | pubmed-46546832016-05-18 Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation Huebsch, Nathaniel Lippens, Evi Lee, Kangwon Mehta, Manav Koshy, Sandeep T Darnell, Max C Desai, Rajiv Madl, Christopher M. Xu, Maria Zhao, Xuanhe Chaudhuri, Ovijit Verbeke, Catia Kim, Woo Seob Alim, Karen Mammoto, Akiko Ingber, Donald E. Duda, Georg N Mooney, David J. Nat Mater Article The effectiveness of stem-cell therapies has been hampered by cell death and limited control over fate(1). These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype(2–4). Stem cell behavior can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials(5–7), yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem-cell behaviors in situ. 2015-09-14 2015-12 /pmc/articles/PMC4654683/ /pubmed/26366848 http://dx.doi.org/10.1038/nmat4407 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Huebsch, Nathaniel Lippens, Evi Lee, Kangwon Mehta, Manav Koshy, Sandeep T Darnell, Max C Desai, Rajiv Madl, Christopher M. Xu, Maria Zhao, Xuanhe Chaudhuri, Ovijit Verbeke, Catia Kim, Woo Seob Alim, Karen Mammoto, Akiko Ingber, Donald E. Duda, Georg N Mooney, David J. Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation |
title | Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation |
title_full | Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation |
title_fullStr | Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation |
title_full_unstemmed | Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation |
title_short | Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation |
title_sort | matrix elasticity of void-forming hydrogels controls transplanted stem cell-mediated bone formation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654683/ https://www.ncbi.nlm.nih.gov/pubmed/26366848 http://dx.doi.org/10.1038/nmat4407 |
work_keys_str_mv | AT huebschnathaniel matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT lippensevi matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT leekangwon matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT mehtamanav matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT koshysandeept matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT darnellmaxc matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT desairajiv matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT madlchristopherm matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT xumaria matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT zhaoxuanhe matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT chaudhuriovijit matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT verbekecatia matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT kimwooseob matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT alimkaren matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT mammotoakiko matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT ingberdonalde matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT dudageorgn matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation AT mooneydavidj matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation |