Cargando…

Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation

The effectiveness of stem-cell therapies has been hampered by cell death and limited control over fate(1). These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype(2–4). Ste...

Descripción completa

Detalles Bibliográficos
Autores principales: Huebsch, Nathaniel, Lippens, Evi, Lee, Kangwon, Mehta, Manav, Koshy, Sandeep T, Darnell, Max C, Desai, Rajiv, Madl, Christopher M., Xu, Maria, Zhao, Xuanhe, Chaudhuri, Ovijit, Verbeke, Catia, Kim, Woo Seob, Alim, Karen, Mammoto, Akiko, Ingber, Donald E., Duda, Georg N, Mooney, David J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654683/
https://www.ncbi.nlm.nih.gov/pubmed/26366848
http://dx.doi.org/10.1038/nmat4407
_version_ 1782402090420666368
author Huebsch, Nathaniel
Lippens, Evi
Lee, Kangwon
Mehta, Manav
Koshy, Sandeep T
Darnell, Max C
Desai, Rajiv
Madl, Christopher M.
Xu, Maria
Zhao, Xuanhe
Chaudhuri, Ovijit
Verbeke, Catia
Kim, Woo Seob
Alim, Karen
Mammoto, Akiko
Ingber, Donald E.
Duda, Georg N
Mooney, David J.
author_facet Huebsch, Nathaniel
Lippens, Evi
Lee, Kangwon
Mehta, Manav
Koshy, Sandeep T
Darnell, Max C
Desai, Rajiv
Madl, Christopher M.
Xu, Maria
Zhao, Xuanhe
Chaudhuri, Ovijit
Verbeke, Catia
Kim, Woo Seob
Alim, Karen
Mammoto, Akiko
Ingber, Donald E.
Duda, Georg N
Mooney, David J.
author_sort Huebsch, Nathaniel
collection PubMed
description The effectiveness of stem-cell therapies has been hampered by cell death and limited control over fate(1). These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype(2–4). Stem cell behavior can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials(5–7), yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem-cell behaviors in situ.
format Online
Article
Text
id pubmed-4654683
institution National Center for Biotechnology Information
language English
publishDate 2015
record_format MEDLINE/PubMed
spelling pubmed-46546832016-05-18 Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation Huebsch, Nathaniel Lippens, Evi Lee, Kangwon Mehta, Manav Koshy, Sandeep T Darnell, Max C Desai, Rajiv Madl, Christopher M. Xu, Maria Zhao, Xuanhe Chaudhuri, Ovijit Verbeke, Catia Kim, Woo Seob Alim, Karen Mammoto, Akiko Ingber, Donald E. Duda, Georg N Mooney, David J. Nat Mater Article The effectiveness of stem-cell therapies has been hampered by cell death and limited control over fate(1). These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype(2–4). Stem cell behavior can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials(5–7), yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem-cell behaviors in situ. 2015-09-14 2015-12 /pmc/articles/PMC4654683/ /pubmed/26366848 http://dx.doi.org/10.1038/nmat4407 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Huebsch, Nathaniel
Lippens, Evi
Lee, Kangwon
Mehta, Manav
Koshy, Sandeep T
Darnell, Max C
Desai, Rajiv
Madl, Christopher M.
Xu, Maria
Zhao, Xuanhe
Chaudhuri, Ovijit
Verbeke, Catia
Kim, Woo Seob
Alim, Karen
Mammoto, Akiko
Ingber, Donald E.
Duda, Georg N
Mooney, David J.
Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation
title Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation
title_full Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation
title_fullStr Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation
title_full_unstemmed Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation
title_short Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation
title_sort matrix elasticity of void-forming hydrogels controls transplanted stem cell-mediated bone formation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654683/
https://www.ncbi.nlm.nih.gov/pubmed/26366848
http://dx.doi.org/10.1038/nmat4407
work_keys_str_mv AT huebschnathaniel matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT lippensevi matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT leekangwon matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT mehtamanav matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT koshysandeept matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT darnellmaxc matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT desairajiv matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT madlchristopherm matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT xumaria matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT zhaoxuanhe matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT chaudhuriovijit matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT verbekecatia matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT kimwooseob matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT alimkaren matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT mammotoakiko matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT ingberdonalde matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT dudageorgn matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation
AT mooneydavidj matrixelasticityofvoidforminghydrogelscontrolstransplantedstemcellmediatedboneformation