Cargando…

Vps34 and PLD1 take center stage in nutrient signaling: their dual roles in regulating autophagy

Autophagy is a critical pathway leading to lysosomal degradation of cellular components in response to changes in nutrient availability. Autophagy includes the biogenesis of autophagosomes and their sequential maturation through fusion with endo-lysosomes. The class III PI3 kinase Vps34 and its prod...

Descripción completa

Detalles Bibliográficos
Autor principal: Yoon, Mee-Sup
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654845/
https://www.ncbi.nlm.nih.gov/pubmed/26589724
http://dx.doi.org/10.1186/s12964-015-0122-x
Descripción
Sumario:Autophagy is a critical pathway leading to lysosomal degradation of cellular components in response to changes in nutrient availability. Autophagy includes the biogenesis of autophagosomes and their sequential maturation through fusion with endo-lysosomes. The class III PI3 kinase Vps34 and its product phosphatidylinositol-3-phosphate (PI(3)P) play a critical role in this process, and enable the amino acid-mediated activation of mammalian target of rapamycin (mTOR), a suppressor of autophagy. Recent studies have shown that phospholipase PLD1, a downstream regulator of Vps34, is also closely involved in both mTOR activation and autophagy. This mini review summarizes recent findings in the regulation of Vps34 and PLD1 and highlights the role of these lipid-metabolizing enzymes in both mTOR activation and autophagy.