Cargando…

The influence of cold weather on the usage of emergency link calls: a case study in Hong Kong

BACKGROUND: In response to an unexpected long cold spell in February 1996 which killed more than 100 older adults (mostly living alone) in Hong Kong, the Hong Kong Senior Citizen Home Safety Association established a Personal Emergency Link Service to provide emergency contact to the older adults, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Feng, Yip, Paul SF
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654920/
https://www.ncbi.nlm.nih.gov/pubmed/26590158
http://dx.doi.org/10.1186/s12911-015-0191-1
Descripción
Sumario:BACKGROUND: In response to an unexpected long cold spell in February 1996 which killed more than 100 older adults (mostly living alone) in Hong Kong, the Hong Kong Senior Citizen Home Safety Association established a Personal Emergency Link Service to provide emergency contact to the older adults, which uses a telephone system to render emergency relief and total care service around the clock. To facilitate the dynamic and efficient allocation of service resources, it is crucial to understand the factors linked with use of the services and number of hospital admissions arising from PE link service. METHODS: We initially use the Poisson generalized linear model (GLM) with polynomial effect functions of relevant covariates. If the time series of residuals from fitting the Poisson GLM reveals significant serial correlation, a Poisson generalized linear autoregressive moving average (GLARMA) model is refitted to the data to account for the auto-correlation among the time series of daily call numbers. If the data is overdispersed relative to the best fitting Poisson GLARMA model, then the negative binomial GLARMA model is refitted to account for any overdispersion. In all the models, dummy variables for weekdays and months are included to account for any cyclic trends due weekday effect or month of the year effect. The secular time trend is modeled by a polynomial function of calendar time over the study period. Finally any critical temperatures are identified by visually inspecting the graph of the effect function of temperature. RESULTS: The weekday and month effects are both significant with Monday seeing more PE Link calls than Sunday and June seeing less than January. Temperature has significant effect on the PE Link call rate with the effect highly nonlinear. A critical temperature, below which excessive increase in PE link calls that lead to hospital admissions, is identified to be around 15 °C. CONCLUSION: Identifying a threshold temperature which generates an excessive increase in the expected number of PE Link calls would be useful in service provision planning and support for elderly in need of hospital admission.