Cargando…
Novel application of heuristic optimisation enables the creation and thorough evaluation of robust support vector machine ensembles for machine learning applications
Today’s researchers have access to an unprecedented range of powerful machine learning tools with which to build models for classifying samples according to their metabolomic profile (e.g. separating diseased samples from healthy controls). However, such powerful tools need to be used with caution a...
Autores principales: | Chatzimichali, Eleni Anthippi, Bessant, Conrad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655007/ https://www.ncbi.nlm.nih.gov/pubmed/26617479 http://dx.doi.org/10.1007/s11306-015-0894-4 |
Ejemplares similares
-
PITDB: a database of translated genomic elements
por: Saha, Shyamasree, et al.
Publicado: (2018) -
Ensemble Machine Learning: Methods and Applications
por: Zhang, Cha, et al.
Publicado: (2012) -
Multi-hazard spatial modeling via ensembles of machine learning and meta-heuristic techniques
por: Bordbar, Mojgan, et al.
Publicado: (2022) -
Support vector machines applications
por: Ma, Yunqian, et al.
Publicado: (2014) -
Support Vector Machine with Ensemble Tree Kernel for Relation Extraction
por: Liu, Xiaoyong, et al.
Publicado: (2016)