Cargando…

Graphene on Ni(111): Electronic Corrugation and Dynamics from Helium Atom Scattering

[Image: see text] Using helium atom scattering, we have studied the structure and dynamics of a graphene layer prepared in situ on a Ni(111) surface. Graphene/Ni(111) exhibits a helium reflectivity of ∼20% for a thermal helium atom beam and a particularly small surface electron density corrugation (...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamtögl, Anton, Bahn, Emanuel, Zhu, Jianding, Fouquet, Peter, Ellis, John, Allison, William
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2015
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655418/
https://www.ncbi.nlm.nih.gov/pubmed/26617683
http://dx.doi.org/10.1021/acs.jpcc.5b08284
Descripción
Sumario:[Image: see text] Using helium atom scattering, we have studied the structure and dynamics of a graphene layer prepared in situ on a Ni(111) surface. Graphene/Ni(111) exhibits a helium reflectivity of ∼20% for a thermal helium atom beam and a particularly small surface electron density corrugation ((0.06 ± 0.02) Å peak to peak height). The Debye–Waller attenuation of the elastic diffraction peaks of graphene/Ni(111) and Ni(111) was measured at surface temperatures between 150 and 740 K. A surface Debye temperature of θ(D) = (784 ± 14) K is determined for the graphene/Ni(111) system and θ(D) = (388 ± 7) K for Ni(111), suggesting that the interlayer interaction between graphene and the Ni substrate is intermediary between those for strongly interacting systems like graphene/Ru(0001) and weakly interacting systems like graphene/Pt(111). In addition we present measurements of low frequency surface phonon modes on graphene/Ni(111) where the phonon modes of the Ni(111) substrate can be clearly observed. The similarity of these findings with the graphene/Ru(0001) system indicates that the bonding of graphene to a metal substrate alters the dynamic properties of the graphene surface strongly and is responsible for the high helium reflectivity of these systems.