Cargando…
Machine-learning to characterise neonatal functional connectivity in the preterm brain
Brain development is adversely affected by preterm birth. Magnetic resonance image analysis has revealed a complex fusion of structural alterations across all tissue compartments that are apparent by term-equivalent age, persistent into adolescence and adulthood, and associated with wide-ranging neu...
Autores principales: | Ball, G., Aljabar, P., Arichi, T., Tusor, N., Cox, D., Merchant, N., Nongena, P., Hajnal, J.V., Edwards, A.D., Counsell, S.J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655920/ https://www.ncbi.nlm.nih.gov/pubmed/26341027 http://dx.doi.org/10.1016/j.neuroimage.2015.08.055 |
Ejemplares similares
-
Thalamocortical Connectivity Predicts Cognition in Children Born Preterm
por: Ball, Gareth, et al.
Publicado: (2015) -
The Effect of Preterm Birth on Thalamic and Cortical Development
por: Ball, Gareth, et al.
Publicado: (2012) -
Regional growth and atlasing of the developing human brain
por: Makropoulos, Antonios, et al.
Publicado: (2016) -
Testing the Sensitivity of Tract-Based Spatial Statistics to Simulated Treatment Effects in Preterm Neonates
por: Ball, Gareth, et al.
Publicado: (2013) -
Machine learning shows association between genetic variability in PPARG and cerebral connectivity in preterm infants
por: Krishnan, Michelle L., et al.
Publicado: (2017)