Cargando…

Optical Frequency Metrology of an Iodine-Stabilized He-Ne Laser Using the Frequency Comb of a Quantum-Interference-Stabilized Mode-Locked Laser

We perform optical frequency metrology of an iodine-stabilized He-Ne laser using a mode-locked Ti:sapphire laser frequency comb that is stabilized using quantum interference of photocurrents in a semiconductor. Using this technique, we demonstrate carrier-envelope offset frequency fluctuations of le...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Ryan P., Roos, Peter A., Wahlstrand, Jared K., Pipis, Jessica A., Rivas, Maria Belmonte, Cundiff, Steven T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655921/
https://www.ncbi.nlm.nih.gov/pubmed/27110472
http://dx.doi.org/10.6028/jres.112.022
Descripción
Sumario:We perform optical frequency metrology of an iodine-stabilized He-Ne laser using a mode-locked Ti:sapphire laser frequency comb that is stabilized using quantum interference of photocurrents in a semiconductor. Using this technique, we demonstrate carrier-envelope offset frequency fluctuations of less than 5 mHz using a 1 s gate time. With the resulting stable frequency comb, we measure the optical frequency of the iodine transition [(127)I(2) R(127) 11-5 i component] to be 473 612 214 712.96 ± 0.66 kHz, well within the uncertainty of the CIPM recommended value. The stability of the quantum interference technique is high enough such that it does not limit the measurements.