Cargando…

Synthetic Incoherence via Scanned Gaussian Beams

Tomography, in most formulations, requires an incoherent signal. For a conventional transmission electron microscope, the coherence of the beam often results in diffraction effects that limit the ability to perform a 3D reconstruction from a tilt series with conventional tomographic reconstruction a...

Descripción completa

Detalles Bibliográficos
Autor principal: Levine, Zachary H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655997/
https://www.ncbi.nlm.nih.gov/pubmed/27274945
http://dx.doi.org/10.6028/jres.111.033
Descripción
Sumario:Tomography, in most formulations, requires an incoherent signal. For a conventional transmission electron microscope, the coherence of the beam often results in diffraction effects that limit the ability to perform a 3D reconstruction from a tilt series with conventional tomographic reconstruction algorithms. In this paper, an analytic solution is given to a scanned Gaussian beam, which reduces the beam coherence to be effectively incoherent for medium-size (of order 100 voxels thick) tomographic applications. The scanned Gaussian beam leads to more incoherence than hollow-cone illumination.