Cargando…
Microwave Power Absorption in Low-Reflectance, Complex, Lossy Transmission Lines
Simple sets of equations have been derived to describe the absorption of microwave power in three-region, lossy transmission lines in terms of S-parameter reflection and transmission amplitudes. Each region was assumed to be homogeneous with discontinuities at the region boundaries. Different sets o...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
[Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4656010/ https://www.ncbi.nlm.nih.gov/pubmed/27110465 http://dx.doi.org/10.6028/jres.112.015 |
Sumario: | Simple sets of equations have been derived to describe the absorption of microwave power in three-region, lossy transmission lines in terms of S-parameter reflection and transmission amplitudes. Each region was assumed to be homogeneous with discontinuities at the region boundaries. Different sets of equations were derived to describe different assumptions about the amplitudes of the reflection coefficients at the different boundaries. These equations, which are useful when interference effects due to multiple reflections are small, were used to analyze S-parameter measurements on a transmission line that had a microfluidic channel in its middle region. The channel was empty for one set of measurements and filled with water for a second set of measurements. Most of the reflection assumptions considered here produced similar results for the fraction of the applied microwave power that was absorbed by a water-filled microchannel. This shows that the absorbed power is relatively insensitive to the reflection details as long as energy is conserved in the analysis. Another important result of this work is that the difference between the power absorbed in a water-filled channel and the power absorbed in the same empty channel can be a poor predictor of the power absorbed in the water in the presence of competing absorption processes such as absorption by the transmission-line metal. |
---|