Cargando…
Hippocampal Transcriptomic and Proteomic Alterations in the BTBR Mouse Model of Autism Spectrum Disorder
Autism spectrum disorders (ASD) are complex heterogeneous neurodevelopmental disorders of an unclear etiology, and no cure currently exists. Prior studies have demonstrated that the black and tan, brachyury (BTBR) T+ Itpr3tf/J mouse strain displays a behavioral phenotype with ASD-like features. BTBR...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4656818/ https://www.ncbi.nlm.nih.gov/pubmed/26635614 http://dx.doi.org/10.3389/fphys.2015.00324 |
_version_ | 1782402282877353984 |
---|---|
author | Daimon, Caitlin M. Jasien, Joan M. Wood, William H. Zhang, Yongqing Becker, Kevin G. Silverman, Jill L. Crawley, Jacqueline N. Martin, Bronwen Maudsley, Stuart |
author_facet | Daimon, Caitlin M. Jasien, Joan M. Wood, William H. Zhang, Yongqing Becker, Kevin G. Silverman, Jill L. Crawley, Jacqueline N. Martin, Bronwen Maudsley, Stuart |
author_sort | Daimon, Caitlin M. |
collection | PubMed |
description | Autism spectrum disorders (ASD) are complex heterogeneous neurodevelopmental disorders of an unclear etiology, and no cure currently exists. Prior studies have demonstrated that the black and tan, brachyury (BTBR) T+ Itpr3tf/J mouse strain displays a behavioral phenotype with ASD-like features. BTBR T+ Itpr3tf/J mice (referred to simply as BTBR) display deficits in social functioning, lack of communication ability, and engagement in stereotyped behavior. Despite extensive behavioral phenotypic characterization, little is known about the genes and proteins responsible for the presentation of the ASD-like phenotype in the BTBR mouse model. In this study, we employed bioinformatics techniques to gain a wide-scale understanding of the transcriptomic and proteomic changes associated with the ASD-like phenotype in BTBR mice. We found a number of genes and proteins to be significantly altered in BTBR mice compared to C57BL/6J (B6) control mice controls such as BDNF, Shank3, and ERK1, which are highly relevant to prior investigations of ASD. Furthermore, we identified distinct functional pathways altered in BTBR mice compared to B6 controls that have been previously shown to be altered in both mouse models of ASD, some human clinical populations, and have been suggested as a possible etiological mechanism of ASD, including “axon guidance” and “regulation of actin cytoskeleton.” In addition, our wide-scale bioinformatics approach also discovered several previously unidentified genes and proteins associated with the ASD phenotype in BTBR mice, such as Caskin1, suggesting that bioinformatics could be an avenue by which novel therapeutic targets for ASD are uncovered. As a result, we believe that informed use of synergistic bioinformatics applications represents an invaluable tool for elucidating the etiology of complex disorders like ASD. |
format | Online Article Text |
id | pubmed-4656818 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-46568182015-12-03 Hippocampal Transcriptomic and Proteomic Alterations in the BTBR Mouse Model of Autism Spectrum Disorder Daimon, Caitlin M. Jasien, Joan M. Wood, William H. Zhang, Yongqing Becker, Kevin G. Silverman, Jill L. Crawley, Jacqueline N. Martin, Bronwen Maudsley, Stuart Front Physiol Physiology Autism spectrum disorders (ASD) are complex heterogeneous neurodevelopmental disorders of an unclear etiology, and no cure currently exists. Prior studies have demonstrated that the black and tan, brachyury (BTBR) T+ Itpr3tf/J mouse strain displays a behavioral phenotype with ASD-like features. BTBR T+ Itpr3tf/J mice (referred to simply as BTBR) display deficits in social functioning, lack of communication ability, and engagement in stereotyped behavior. Despite extensive behavioral phenotypic characterization, little is known about the genes and proteins responsible for the presentation of the ASD-like phenotype in the BTBR mouse model. In this study, we employed bioinformatics techniques to gain a wide-scale understanding of the transcriptomic and proteomic changes associated with the ASD-like phenotype in BTBR mice. We found a number of genes and proteins to be significantly altered in BTBR mice compared to C57BL/6J (B6) control mice controls such as BDNF, Shank3, and ERK1, which are highly relevant to prior investigations of ASD. Furthermore, we identified distinct functional pathways altered in BTBR mice compared to B6 controls that have been previously shown to be altered in both mouse models of ASD, some human clinical populations, and have been suggested as a possible etiological mechanism of ASD, including “axon guidance” and “regulation of actin cytoskeleton.” In addition, our wide-scale bioinformatics approach also discovered several previously unidentified genes and proteins associated with the ASD phenotype in BTBR mice, such as Caskin1, suggesting that bioinformatics could be an avenue by which novel therapeutic targets for ASD are uncovered. As a result, we believe that informed use of synergistic bioinformatics applications represents an invaluable tool for elucidating the etiology of complex disorders like ASD. Frontiers Media S.A. 2015-11-24 /pmc/articles/PMC4656818/ /pubmed/26635614 http://dx.doi.org/10.3389/fphys.2015.00324 Text en Copyright © 2015 Daimon, Jasien, Wood, Zhang, Becker, Silverman, Crawley, Martin and Maudsley. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Daimon, Caitlin M. Jasien, Joan M. Wood, William H. Zhang, Yongqing Becker, Kevin G. Silverman, Jill L. Crawley, Jacqueline N. Martin, Bronwen Maudsley, Stuart Hippocampal Transcriptomic and Proteomic Alterations in the BTBR Mouse Model of Autism Spectrum Disorder |
title | Hippocampal Transcriptomic and Proteomic Alterations in the BTBR Mouse Model of Autism Spectrum Disorder |
title_full | Hippocampal Transcriptomic and Proteomic Alterations in the BTBR Mouse Model of Autism Spectrum Disorder |
title_fullStr | Hippocampal Transcriptomic and Proteomic Alterations in the BTBR Mouse Model of Autism Spectrum Disorder |
title_full_unstemmed | Hippocampal Transcriptomic and Proteomic Alterations in the BTBR Mouse Model of Autism Spectrum Disorder |
title_short | Hippocampal Transcriptomic and Proteomic Alterations in the BTBR Mouse Model of Autism Spectrum Disorder |
title_sort | hippocampal transcriptomic and proteomic alterations in the btbr mouse model of autism spectrum disorder |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4656818/ https://www.ncbi.nlm.nih.gov/pubmed/26635614 http://dx.doi.org/10.3389/fphys.2015.00324 |
work_keys_str_mv | AT daimoncaitlinm hippocampaltranscriptomicandproteomicalterationsinthebtbrmousemodelofautismspectrumdisorder AT jasienjoanm hippocampaltranscriptomicandproteomicalterationsinthebtbrmousemodelofautismspectrumdisorder AT woodwilliamh hippocampaltranscriptomicandproteomicalterationsinthebtbrmousemodelofautismspectrumdisorder AT zhangyongqing hippocampaltranscriptomicandproteomicalterationsinthebtbrmousemodelofautismspectrumdisorder AT beckerkeving hippocampaltranscriptomicandproteomicalterationsinthebtbrmousemodelofautismspectrumdisorder AT silvermanjilll hippocampaltranscriptomicandproteomicalterationsinthebtbrmousemodelofautismspectrumdisorder AT crawleyjacquelinen hippocampaltranscriptomicandproteomicalterationsinthebtbrmousemodelofautismspectrumdisorder AT martinbronwen hippocampaltranscriptomicandproteomicalterationsinthebtbrmousemodelofautismspectrumdisorder AT maudsleystuart hippocampaltranscriptomicandproteomicalterationsinthebtbrmousemodelofautismspectrumdisorder |