Cargando…
The effect of caffeine on cerebral asymmetry in rats
EEG recordings reflect the gross electrical activity emanating from synaptic currents of individual neurons across large cortical areas. During periods of cortical activation, waking, and higher EEG frequencies, neurons display increased excitability and exhibit more asynchronous discharge. The acti...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Carol Davila University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4656956/ https://www.ncbi.nlm.nih.gov/pubmed/26664474 |
Sumario: | EEG recordings reflect the gross electrical activity emanating from synaptic currents of individual neurons across large cortical areas. During periods of cortical activation, waking, and higher EEG frequencies, neurons display increased excitability and exhibit more asynchronous discharge. The activity of a number of subcortical neurotransmitter systems from several brain regions outside the thalamus can directly affect cortical activity patterns. These neurotransmitter systems are generally targets of pharmacological intervention or participate in neurological disease states. The EEG trace comprises 4 primary rhythms: alfa (α), beta (β), theta (θ) and delta (δ), which differ in frequency and amplitude. Caffeine effect on brain asymmetry will be studied in this work. The study was realized by means of Fourier spectral frequency analysis (Fast Fourier Transformation) of the EEG signal on anesthetized rats. All 3 doses of caffeine increased the global wave power of brain activity compared to the control group. All 3 doses of caffeine reduced the number of peaks for the 0.5-4 Hz frequency band, with the intermediate dose of caffeine having such an effect in the 4-7 Hz frequency band and the high dose of caffeine for the 23-33 Hz frequency band. The group that received high doses of caffeine showed an increase of the percentage of delta waves, with a concurrent decrease of the percentage of alpha1, alpha2, beta and theta 2 compared to the control group. Low-dose caffeine produced positive values of left-right difference in brain electrical activity (left predominance) for the 0.5-5 Hz and 7.8-10.3 Hz frequency intervals. The group that received high-dose caffeine exhibited a left hemisphere dominance for the 0.5-1.5 Hz; 13.9-14.1 Hz and 19-20 Hz frequency ranges while right dominance was present in the 1.7-13.9 Hz, 15-19 Hz and 21-25 Hz frequency ranges. In conclusion, all doses of caffeine modified the global power of the brain as well as the number of peaks on the frequency range of 0.5-4 Hz. The higher dose of caffeine modified the percentage of alpha 1, alpha2, beta, delta and theta2 waves compared to the control group. The group that received 150 mg caffeine/ kg.b.w. recorded a reversal in the cerebral asymmetry of rats in the 1.7-13.9 Hz, 15-19 Hz and 21-25 Hz frequency ranges. |
---|